期刊文献+

基因表达谱富集分析方法研究进展 被引量:3

Progress on Enrichment Analysis Approach of Gene Expression Profiles
下载PDF
导出
摘要 微阵列技术是生物技术变革的核心,允许研究者同时监测成千上万个基因的表达水平,已广泛应用于医学研究。如何挖掘海量基因表达信息中的有用信息并进行生物学专业解释,是基因表达谱数据分析领域所面临的一个重要挑战。不同的研究者提出了各种基于基因集进行富集分析的方法,在此将这些方法大致分为两大类,即bottom-up方法和top-down方法。前者先进行单基因分析,然后根据生物学领域知识注释基因集并进行分析。该方法应用广泛,且结果比单基因分析容易解释。后者先根据生物学领域知识将各基因进行归类,然后进行基因差异表达模式分析。该方法不仅能提高结论的可解释性,而且能达到降维的目的。 Microarrays are at the center of a revolution in biotechnology, allowing researchers to simultaneously monitor the expression of tens of thousands of genes, having been widely used in medical research. The main challenge faced by the researchers is to extract useful information from such gene expression profiles and then implement biological interpreta- tion of such results. At present, all kinds of different research groups based on pre-defined gene set proposed different enrichment analysis methods. In this paper, these methods will be roughly divided into two categories: bottom-up approach and top-down approach. The former approach tested genes individually first then aggregated by biological knowledge. This approach was widely used, and its results were easier to explain than the results of the single gene analysis. The latter approach performed domain aggregation by first combining gene expressions before testing for differentially expressed patterns. This method can not only increase interpretability of analysis output, but also reach dimension reduction purposes.
出处 《生物技术通讯》 CAS 2008年第6期931-934,共4页 Letters in Biotechnology
基金 陕西省自然科学基金(2003F11) 陕西省科技计划(2008K04-02)
关键词 基因表达谱 基因集 富集分析 GeneOntology术语 统计推断 gene expression profiles gene set enrichment analysis Gene Ontology term statistical inference
  • 相关文献

参考文献13

  • 1Subramanian A, Tamayo P, Mootha V K, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Nat Acad Sci USA, 2005, 102(43): 15545-15550.
  • 2Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology[J]. Nat Genet, 2000,25(1):25-29.
  • 3Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000,28(1):27-30.
  • 4Mao X Z, Cai T, Olyarehuk J G. Automated genome annotation and pathway identification using the KEGG orthology (KO) as a controlled vocabulary[J]. Bioinformatics, 2005,21(19):3787-3793.
  • 5Trajkovski I, Lavarac N, Tolar J. SEGS: search for enriched gene sets in microarray data[J]. J Biomed Inform, 2008,41(4):588-601.
  • 6屠康,喻辉,郭政,李霞.GO功能类与基因差异表达的关联规则挖掘算法[J].生物化学与生物物理进展,2004,31(8):705-711. 被引量:3
  • 7Rubin E. Circumventing the cut-off for enrichment analysis[J]. Briefings Bioinformatics, 2006,7(2):202-203.
  • 8Mootha V K, Lindgren C M, Eriksson K F, et al. PGC-1alpha-reponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes[J]. Nat Genet, 2003,34(3):267- 273.
  • 9Tian A L, Greenberg S A, Kong S W, et al. Discovering statistically significant pathways in expression profiling studies [J]. Proc Nat Acad Sci USA, 2005,102(38):13544-13549.
  • 10Man M Z, Wang X, Wang Y X. Power sage: comparing statistical tests for sage experiments[J]. Bioinformatics, 2000,16(11):953-959.

二级参考文献19

  • 1[1]Ramsay G. DNA chips: state-of-the art. Nature Biotechnology,1998. 16 (1): 40 ~44
  • 2[2]Butte A J, Ye J, Neideffellner G. Determining significant fold differences in gene expression analysis. Pacific Symposium on Biocomputing, Hawaii, 2001
  • 3[3]Mariani T J, Budhraja V, Mecham B H, et al. A variable fold change threshold determines significance for expression microarrays.FASEB J, 2003, 17 (2): 321 ~323
  • 4[4]Smyth G K, Yang Y H, Speed T. Statistical issues in cDNA microarray data analysis. Meth Mol Biol, 2003, 224:111 ~136
  • 5[5]Draghici S, Khatri P, Martins R, et al. Global functional profiling of gene expression. Genomics, 2003, 81 (2): 98 ~ 104
  • 6[6]Zhou X, Kao M C. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci USA, 2002,99 (20): 12783 ~ 12788
  • 7[7]Ashburner M, Ball C. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet, 2000, 25(1): 25 ~29
  • 8[8]Rison S C, Hodgman T C, Thornton J M. Comparison of functional annotation schemes for genomes. Funct Integr Genomics, 2000, 1(1): 56 ~69
  • 9[9]Lennon G G, Auffray C. The I. M. A. G. E. Consortium: An integrated molecular analysis of genomes and their expression.Genomics, 1996, 33 (1): 151 ~152
  • 10[10]Benson D, Karsch M. GenBank. Nucleic Acids Research, 2003,31 (1):23~27

共引文献2

同被引文献27

  • 1彭桂英,王恒.恶性疟候选疫苗研究进展[J].国际医学寄生虫病杂志,2007,34(1):37-42. 被引量:1
  • 2Snow RW, Uerra CA, Noor AM, et al. The global distribution of clinical episodes of Plasmodium falciparum malaria [ J ]. Nature, 2005, 434(7030) : 214 -217.
  • 3Aurrecoechea C, Brestelli J, Brunk BP, et al. PlasmoDB: a functional genomic database for malaria parasites[ J ]. Nucleic Acids Res, 2009, 37: D539- D543.
  • 4Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. GenBank [J]. Nucleic AcidsRes, 2011, 39: D32-D37.
  • 5Kanehisa M, Goto S, Sato Y, et al. KEGG for integration and interpretation of large-scale molecular datasets [ J]. Nucleic Acids Res, 2012, 40:D109 -D114.
  • 6The Gcne Ontology Consortium. Gene ontology: tool for the unification of biology [ J]. Nat Genet, 2000, 25 (1): 25- 29.
  • 7Licata L, Briganti L, Peluso D, et al. MINT, the molecular interaction database: 2012 update [ J ]. Nucleic Acids Res, 2012, 40:D857 - D861.
  • 8The UniProt Consortium. Reorganizing the protein space at the Universal Protein Resource (UniProt) [ J]. Nucleic Acids Res, 2012, 40:D71 - D75.
  • 9Affymetrix Community. Plasmodium_ Anopheles Annotations, CSV format, Release 32 [ EB/OL]. http://www, affymetrix. com/estore/support/technical/annotationfilesmain, affx, 2011 - 06 - 22/2012 - 11 - 02.
  • 10ASHBURNER M, BALL C A, BLAKE J A, et al. Gene Ontology : tool for the unification of biology [ J ]. Nature Genetics, 2000, 25 ( 1 ) : 25 - 29.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部