期刊文献+

基因芯片筛选差异表达基因方法比较 被引量:4

Comparison of statistical methods for detecting differential expression in microarray data
下载PDF
导出
摘要 使用计算机模拟数据和真实的芯片数据,对8种筛选差异表达基因的方法进行了比较分析,旨在比较不同方法对基因芯片数据的筛选效果。模拟数据分析表明,所使用的8种方法对均匀分布的差异表达基因有很好的识别、检出作用。算法方面,SAM和Wilcoxon秩和检验方法较好;数据分布方面,正态分布的识别效果较好,卡方分布和指数分布的识别效果较差。杨树cDNA芯片分析表明,SAM、Samroc和回归模型方法相近,而Wilcoxon秩和检验方法与它们有较大差异。 DNA microarray is a new tool in biotechnology, which allows simultaneously monitoring thousands of gene expression in cells. The goal of differential gene expression analysis is to detect genes with significant change of gene ex- pression levels arising from experimental conditions. Although various statistical methods have been suggested to confirm differential gene expression, only a few studies compared performance of the statistical methods. This paper presented comparison of statistical methods for finding differentially expressed genes (DEGs) from the microarray data. Using simu- lated and real datasets (Populus cDNA microarray data), we compared eight methods of identifying differential gene ex- pression. The simulated datasets included four differential distributions (normal distribution, uniform distribution, Z2 distri- bution, and exponential distribution). The results of simulated datasets analysis showed that the eight methods were more preferable with the microarray data of uniform distribution than normal distribution. They were not preferable with the ~2 distribution and exponential distribution. Of these eight methods, SAM (Significance Analysis of Microarrays) and Wil- coxon rank sum test performed well in most cases. The results of real cDNA microarray data of Populus showed that there was much similarity of SAM, Samroc, and regression modeling approach. Wilcoxon rank sum test was different from them. Samroc and regression modeling approach were similar in the eight methods. For both simulated and real datasets, SAM, Samroc, and regression modeling approach performed better than other methods.
出处 《遗传》 CAS CSCD 北大核心 2008年第12期1640-1646,共7页 Hereditas(Beijing)
基金 江苏省自然科学基金“重要模式树种(杨树和杉木功能基因组学研究)”项目(编号:BK2003213)资助~~
关键词 基因芯片 杨树 差异表达 microarray Populus differential expression
  • 相关文献

参考文献31

  • 1Brent R. Genomic biology. Cell, 2000, 100(1): 169-183.
  • 2Baldi P, Long AD. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics, 2001, 17(6): 509-519.
  • 3Newton MA, Kendziorski CM, Richmond CS, Blattner FR, Tsui KW. On differential variability of expression ratios: improving statistical inference about gene expression changes from microarray data. J Comput Biol, 2001, 8(1): 37-52.
  • 4Lonnstedt I, Speed TP. Replicated microarray data. Star Sin, 2002, 12: 31-46.
  • 5Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol, 2004, 3: Article 3.
  • 6Tusher VG, Tibshirani R, Chu G, Significance analysis of microarrays applied to transcriptional responses to ionizing radiation. Proc Natl Acad Sci USA, 2001, 98:5116-5121.
  • 7Dudoit S, Yang YH, Speed TP, Callow MJ. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin, 2002, 12: 111-139.
  • 8Pan W, Lin J, Le C. A mixture model approach to detecting differentially expressed genes with microarray data. Funct Integr Genomics, 2003, 3(3): 117-124.
  • 9Nykter M, Aho T, Ahdesmaiki M, Ruusuvuori P, Lehmussola A, Yli-Harja O. Simulation of microarray data with realistic characteristics. BMC Bioinformatics, 2006, 7: 349.
  • 10Kim SY, Lee JW, Sohn IS. Comparison of various statistical methods for identifying differential gene expression in replicated microarray data. Stat Methods Med Res, 2006, 15(1): 3-20.

同被引文献123

  • 1蒋定锋,高峻,赵耐青.乳腺癌基因芯片数据分析[J].复旦学报(医学版),2005,32(2):169-172. 被引量:2
  • 2孙薇,贺福初.差异蛋白质组学研究技术新进展[J].化学通报,2005,68(6):401-407. 被引量:12
  • 3王洪宝,王启贵,李辉.利用基因芯片技术研究两品种鸡脂肪组织差异表达基因[J].生物工程学报,2005,21(6):979-982. 被引量:7
  • 4荆志伟,王忠,王永炎,高思华.基因芯片数据分析方法研究进展[J].生物技术通讯,2007,18(1):144-148. 被引量:5
  • 5Yu H, Chen X, Hong Y Y, Wang Y, Xu P, Ke S D, Liu H Y, Zhu J K, Oliver D J, Xiang C B. Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. The Plant Cell, 2008, 20: 1134-1151.
  • 6Zhu T. Global analysis of gene expression using GeneChip microarrays. Current Opinion in Plant Biology, 2003, 6:418-425.
  • 7Jung C , Lyou S H, Yeu S Y, Kim M A, Rhee S, Kim M, Lee J S, Choi Y D, Cheong J J. Microarray-based screening of jasmonateresponsive genes in Arabidopsis thaliana. Plant Cell Reports, 2007, 26:1053-1063.
  • 8Guo P G, BaumM, Li R H, Grando S, Varshney R K, Granet, A, Ceccarelli S, Valkoun J. Transcriptional analysis of barley genes in response to drought stress at the reproductive growth stage using affymetrix Barley 1 genechip. Journal of Guangzhou University: Naturaf Science Edition, 2007, 6(5): 36-41.
  • 9Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K J, Yamaguehi-Shinozaki K, Caminci P, Kawai J, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of around 7000 Arabidopsis genes under ABA treatments using a full-length eDNA mieroarray. Functional andlntegrative Genomics, 2002, 2: 282-291.
  • 10Kawasaki S, Borehert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert H J. Gene expression profiles during the initial phase of salt stress in rice. The Plant Cell, 2001, 13: 889-905.

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部