期刊文献+

基于分水岭变换的单幅高分辨率SAR图像建筑物检测方法(英文)

Building Detection froma Single High-resolution SAR Image Using Watershed Transform
下载PDF
导出
摘要 提出了一种从单幅高分辨率SAR图像中检测建筑物的算法框架。该框架主要以应用标记的分水岭变换为基础,针对SAR图像中建筑物所具有的强回波特性与典型的形状特征,主要采用CFAR检测和文中提出的方向相关分析方法得到标记图像,利用最小强制技术和标记图像修改原始图像的梯度图,对修改后的梯度图作分水岭变换得到建筑物目标的边界轮廓。该方法能够引入建筑物目标的特性同时克服分水岭变换固有的过分割缺陷。文中对不同场景的高分辨率SAR图像进行了实验,实验结果表明,即使在建筑物分布密集的情况下,本文算法也能正确完整地检测出绝大多数目标,检测率高而虚警率低。 This paper deals with detecting buildings from a single high-resolution synthetic aperture radar (SAR) image. A building detection framework based on the marker-controlled watershed transform was proposed. In this framework, the strong radar backseatter energy and shape features of buildings in SAR images were introduced as markers, which were extracted mainly by a constant false alarm rate (CFAR) detector and a method of shape analysis called direction con'elation analysis, Combined with the markers, the minima imposition technique was implemented on the gradient image of the original SAR image in order to overcome the oversegmentation drawback of a directly-computed watershed. The building boundaries were then obtained by computing the watersheds of the modified gradient image. We applied the proposed method to high - resolution SAR images of different scenes. The results reveal that this method has a high detection rate and a low false alarm rate even if the buildings are densely distributed.
出处 《宇航学报》 EI CAS CSCD 北大核心 2008年第6期1984-1990,共7页 Journal of Astronautics
基金 国家自然科学基金(60772045,40801179)
关键词 合成孔径雷达图像 建筑物检测 分水岭变换 最小强制 方向相关分析 Synthetic aperture radar (SAR) images Building detection Watershed transform Minima imposition Direction correlation analysis
  • 相关文献

参考文献14

  • 1Simoneno E, Oriot H, Garello R. Radargrammetric processing for 3- D building extraction from high-resolution airborne SAR data[C]// IEEE Proceedings of International Geosicenee and Remote Sensing Symposium, Toulouse, France, 2003: 2002- 2004.
  • 2Tupin F, Roux M. Detection of building outlines based on the fusion of SAR and optical features [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2003, 58(1): 71- 82.
  • 3Bolter R, Leberl F, Detection and reconstruction of buildings from multiple view interferometric SAR data[ C]//IEEE Proceedings of International Geosicence and Remote Sensing Symposium, 2000, 2: 749 - 751.
  • 4Soergel U, Schulz K, Thoennessen U, Stilla U. Determination of optimal SAR illumination aspects in built-up areas[C]//IEEE Proceedings of International Geosieence and Remote Sensing Symposium, Hawaii, USA, 2003, 6: 3662- 3664.
  • 5Borghys D. Interpretation and registration of high-resolution polarimetric SAR images[D]. PhD thesis, Ecole Nationale Superleure des. Telecommunications, Dept. TSI, Paris, 2001.
  • 6Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6) : 583 - 598.
  • 7Soille P. Morphological Image Analysis: Principles and Applications [M]. Second ed., New York: Springer-Verlag, Berlin, 2003.
  • 8Oliver C J. Understanding Synthetic Aperture Radar Images[ M]. Artech House, Boston/London, 1998: 75-121.
  • 9Gao G, Kuang G Y, Zhang Q, Li D R. Fast detecting and locating groups of targets in high-resolution SAR images, Pattern Recognition, 2007,40:1378 - 1384.
  • 10Snyder W E, Qi H. Machine Vision[M]. Beijing: China Machine Press, 2005.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部