期刊文献+

数学形态学在害虫种群密度监测中的应用 被引量:5

Monitoring population density of pests based on mathematical morphology
下载PDF
导出
摘要 随着信息快速采集技术、计算机网络技术、人工智能、图像识别、决策支持系统等高新技术的发展,推动了"精细农作"技术体系的广泛实践。该文将数学形态学的基本运算方法及形态分水岭分割算法等图像处理信息技术运用到害虫种群密度监测中,根据昆虫飞行中CCD镜头区域远近及昆虫个体大小的先验知识,利用基于先验知识的流域分割算法,能有效地抑制背景及翅膀的影响,准确地识别出昆虫的个数,试验分析表明大大提高了害虫信息的采集效率及精度。 With the development of computer network technology, artificial intelligence, images recognition and decision support system, precision farming technology system is used more and more widely. In this paper, image information processing technology such as mathematical morphology and watershed segmentation algorithm is used to monitor pest population density. According to the distance between CCD and flying insects and size of insect individuals, watershed segmentation algorithm based on priori information is proposed, which can effectively restrain the impact of background and insects' wings, while at the same time raises the efficiency and precision of pest data acquisition greatly.
作者 翁桂荣
出处 《农业工程学报》 EI CAS CSCD 北大核心 2008年第11期135-138,共4页 Transactions of the Chinese Society of Agricultural Engineering
基金 江苏省高校自然研究基金资助项目(03KJD460193)
关键词 种群监测 数学形态学 图像处理 分水岭算法 monitoring population, mathematical morphology, image processing, watershed algorithm
  • 相关文献

参考文献6

  • 1Jason W Chapman, Reynolds Don R, Smith Alan D, et al. High-altitude migration of the diamondback moth Plutella xylostella to the U.K., a study using radar, aerial netting, and ground trapping[J].EcologicalEntomology, 2002, 27(26): 641 --650.
  • 2吕昭智,沈佐锐,程登发,姚青.现代信息技术在害虫种群密度监测中的应用[J].农业工程学报,2005,21(12):112-115. 被引量:15
  • 3于新文,沈佐锐.昆虫数字图像的分割技术研究[J].农业工程学报,2001,17(3):137-141. 被引量:32
  • 4崔屹.图像处理与分析--数学形态学方法及应用[M].北京:科学出版社.2002:127-133.
  • 5Edward R. Dougherty, Roberto A. Lotufo. Hands-on Morphological Image Processing[M]. Bellingham, Wash.: SPIE Optical Engineering Press, 2003: 129--136.
  • 6Rafael Gonzalez, Richard Woods, Steven Eddins, et al. Digital Image Processing Using MATLAB[M].北京:电子工业出版社,2005:268-270.

二级参考文献12

共引文献51

同被引文献137

引证文献5

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部