期刊文献+

非线性感染率的HIV模型的动力学研究 被引量:1

Study of HIV Model with Nonlinear Infection Rate
原文传递
导出
摘要 众所周知,数学模型为引起人类免疫力缺乏的HIV-1型病毒和引起肝炎的HCV病毒的研究提供了重要信息.然而几乎所有的数学模型感染率都是线性的,而线性只是反映了T细胞与病毒分子之间的简单作用.这篇论文研究了一类具有非线性传染率的数学模型.通过分析我们得到了无病平衡态P0全局渐近稳定的条件及染病平衡态P-的稳定性条件. It is well known that the mathematical models provide very significant informations for the research of human immunodeficiency virus-type 1 (HIV-1) and hepatitis C virus (HCV). However, the infection rate of almost all mathematical models is linear, the linearity shows the simple interaction between the T cells and the viral particles. This paper considers the mathematical model with one class of the non-linear infection rate. We analyzed that the sufficient conditions for the global stability of the uninfected equilibrium state P0 and the infected equilibrium state P^-.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第22期130-135,共6页 Mathematics in Practice and Theory
关键词 非线性发生率 全局稳定 HIV HCV nonlinear incidence global stability HIV HCV
  • 相关文献

参考文献4

  • 1Perelson A S, Nelson P W. Malhematical analysis of HIV-1 dynamics in vivo[J]. SIAM Review, 1999,41 (1): 3- 44.
  • 2Leenheer P D, Smith H L. Virus dynamics: a global analysis[J]. SIAM J Appl Math, 2003,63:1313-1327.
  • 3Wang L, Ellermeyer S. HIV infection and CD4+T cell dynamics[J]. Discrete and Continuous.Dynamical Systems scrics, 2006,6: 1417-1430.
  • 4Mudowney J A.Compound matrices and ordinary differential cquations[J]. Rocky Mountain J Math,1990,20:857 872.

同被引文献7

  • 1PERELSON A, NELSON P. Mathematical models of HIV dynamics in Vivo[ J ]. SIAM Review, 1999,41 (1) :3-44.
  • 2LI D, MAW B. Asymptotic properties of a HIV-1 infection model with time delay[J]. J Math Anal Appl, 2007, 335( 1 ) :683- 691.
  • 3COVERT D J, KIRSCHNER D. Revisiting early models of the host-pathogen interactions in HIV infection [ J ]. Comments Theor. Biol, 2005 (6) : 383-411.
  • 4PERELSON A S. Modelling viral and immune system dynamics [ J ]. Nat Rev Imm,2002 (2) :28-36.
  • 5Scientific, 1989 V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations [ M ]. Singapore:World.
  • 6陈美玲,朱惠延.具免疫时滞的HIV感染模型动力学性质分析[J].生物数学学报,2009,24(4):624-634. 被引量:13
  • 7王永昭,黄东卫,张双德,刘鸿杰.一类具有免疫时滞的HIV感染模型分析[J].天津工业大学学报,2011,30(3):76-80. 被引量:2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部