期刊文献+

一种特殊条件下的扩散方程的数值解法及物理分析 被引量:1

Numerical Method and Physical Analysis for One Special Diffusion Equation
原文传递
导出
摘要 利用有限差分方法中的预估校正格式求解裂变产物在燃料芯块中的扩散方程,并进行了灵活的边界条件处理,取得了令人满意的计算精度,为有效开展对反应堆燃料元件破损探测信号的定量分析提供了条件.对数值计算过程进行了一定的物理分析,从物理意义上解释了数值计算过程中一些特殊处理的合理性. This paper describes the finite difference method with some special boundary condition's disposing method used for solving the diffusion equation of fission products' release from fuel to gap. The result is satisfactory which will facilitate the quantitative analysis of failed fuel detection signal. This paper gives some explanations of the rationality of the numerical method
出处 《数学的实践与认识》 CSCD 北大核心 2008年第22期136-141,共6页 Mathematics in Practice and Theory
关键词 芯块与包壳间隙 扩散 预估校正 有限差分 fuel-to-clad gap diffusion estimation and emendations finite difference
  • 相关文献

参考文献3

  • 1Lewis B J. Fundamental aspects of defective nuclear fuel behavior and fission product release [J]. Journal of Nuclear Materials, 1988,160 : 201-217.
  • 2Lewis B J, El-Jaby A, Higgs J, et al. A model for predicting coolant activity behavior for fuel-failure monitoring system[J]. Journal of Nuclear Materials,2007,366:37-51.
  • 3Booth A H. A suggested method for calculating the diffusion of radioactive rare gas fission products from UO2 fuel elements and a discussion of proposed in-reactor experiments that may he used to test its validity[R]. AECL-700. Canada : Atomic Energy of Canada Limited, 1957.

同被引文献5

  • 1王玉兰,宋小军,张岩.一类反应扩散方程组的解的爆破(英文)[J].西南师范大学学报(自然科学版),2006,31(5):43-46. 被引量:6
  • 2LEWIS B J. Fundamental Aspects of Defective Nuclear Fuel Behavior and Fission Product Release [J]. Journal of Nuclear Materials, 1988, 160:201-217.
  • 3LEWIS B J, EI-JABY A, HIGGS J, et al. A Model for Predicting Coolant Activity Behavior for Fuel Failure Monitoring System[J].Journal of Nuclear Materials, 2007, 366:37- 51.
  • 4严镇军.数学物理方程[M].2版.合肥:中国科学技术出版社,2004:113-116.
  • 5罗卫华,邬凌,王彬.变系数反应扩散方程的差分解法[J].西南师范大学学报(自然科学版),2011,36(4):88-92. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部