期刊文献+

对称反对称紧支撑正交多小波的构造 被引量:6

Construction of Symmetric/Antisymmetric Compactly Supported Orthogonal Multiwavelets
原文传递
导出
摘要 对于给定的对称反对称紧支撑正交r重尺度函数,给出一种构造对称反对称紧支撑正交多小波的方法.通过此方法构造的多小波与尺度函数有相同的对称性与反对称性,并且给出算例. For a compactly supported symmetric and antisymmetric orthogonal muhiscaling function, we present an appoach for constructing symmetric and antisymmetric compactly supported orthogonal multiwavelets. Muhiwavelets costructed by our method have the same symmetriy and antisymmetriy as muhiscaling function and we give examples.
作者 孙垒 程正兴
出处 《数学的实践与认识》 CSCD 北大核心 2008年第22期169-174,共6页 Mathematics in Practice and Theory
基金 河南理工大学博士基金
关键词 多分辨分析 多尺度函数 多小波 对称反对称 完全重构 MRA muhiscaling function multiwavelet symmetry and antisymmetry pcrtfect reconst ruction
  • 相关文献

参考文献9

  • 1Chui C K, Lian J. A study on orthogonal muhiwavelets [J]. Appl Numer Math, 1996,20 (3) : 273-298.
  • 2Lawton W, Lee S L, Shen Z W. An algorithm for matrix extension and wavelet construction[J]. Linear Algebra Appl, 1996,65 (3) : 723-737.
  • 3Shen L, Tan H H, Tham J Y. Symmetric-antisymmetric orthonormal multiwavelets and related scalar wavelets[J]. Applied and Computational Harmonic Analysis,2000,8(3):258-279.
  • 4杨守志,申培萍,杨建伟.矩阵的正交扩充与多正交小波[J].Journal of Mathematical Research and Exposition,2003,23(3):525-534. 被引量:2
  • 5杨建伟,程正兴.正交多小波的构造[J].高等学校计算数学学报,2003,25(2):110-115. 被引量:1
  • 6杨守志,杨晓忠.紧支撑正交对称和反对称小波的构造[J].计算数学,2000,22(3):333-338. 被引量:13
  • 7Jiang Q T,Symmetric parauntitary matrix cxtension and parmctrizatio nof symmetric orthogonal multifilter banks[J].SIAM J Matrix Anal Appl.2001,23(1):167-186.
  • 8Lihong Cui, Zhengxing Cheng. An algorthm for constructing symmetric orthognal multiwayelets by matrix symmetric extcnsion[J ]. Applied Mathematics and Computation, 2004. 149(1):227-243.
  • 9Jiang Q T.Paramcterizatio nof m-channel orthogunal multifilter banks[J].Advances in Computational Matematics, 2000,12( 1 ) : 189-211.

二级参考文献12

  • 1杨守志,程正兴.紧支撑正交小波的构造[J].工程数学学报,1998,15(2):23-28. 被引量:11
  • 2王国荣.矩阵与算子广义逆[M].北京:科学出版社,1998..
  • 3CHUI C K, LIAN J. A study on orthonormal multiwavelets [J]. J. Appl. Numer. Math. , 1996, 20(3): 273--298.
  • 4GOODMAN T N T, LEE S L. Wavelets of multiplicity r [.J]. Trans. Amer. Math. Soc. , 1994, 342:307--324.
  • 5LIAN J. Orthogonality criteria for multiscaling functions [J]. Appl. Comput. Harmon. Anal. , 1998,5(3): 277--311.
  • 6YANG Shou-zhi, CHENG Zheng-xing, WANG Hong-yong. Construction of biorthogonal multiwavelets[J]. J. Math. Anal. Appl., 2002, 276(1): 1--12.
  • 7DAUBECHIE I. Orthoronmal bases of compactly supported wavelets [J]. Comm. Pure. Appl. Math. ,1998, 41: 909--996.
  • 8LAWTON W, LEE S L, SHEN Z. An algorithm for matrix extension and wavelet construction [J].Math. Comp. , 1996, 65: 723--737.
  • 9GOH S S, YAP V B. Matrix extension and biorthogonal mnultiwavelets construction [J]. Linear Algebra Appl. , 1998, 2691139--157.
  • 10STRELA V, HELLER P N, STRANG G, et al. The application of multiwavelet filterbanks to image processing [J]. IEEE Trans. Image. Process. , 1999, 8: 548--563.

共引文献13

同被引文献23

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部