期刊文献+

恒等式的几何意义及其组合证明 被引量:3

Geometric Interpretation and Combiantoral Proof of Gauss Cofficient Idetifies
原文传递
导出
摘要 给出G auss系数的定义及其几何意义,对一些G auss系数恒等式给出了组合分析的证明,并且相应地给出它们的几何解释. The definition and the geometric meaning of Gauss coefficient and the combinatorial proof for some Gauss cofficient idetifies is given. And corresponding their geometric interpretations has obtained. Then from obtaining results deduce other some Gauss idetifies.
作者 陈修焕
出处 《数学的实践与认识》 CSCD 北大核心 2008年第22期181-184,共4页 Mathematics in Practice and Theory
关键词 有限域 行向量空间 子空间 Gauss系数 finite fields row vector spaces subspaces gauss cofficient
  • 相关文献

参考文献3

  • 1万哲先.有限域上典型群几何学[M].科学出版社,2003.
  • 2万哲先.二项式系数和Gauss系数[J].数学通报,1994,33(10). 被引量:6
  • 3万哲先,霍元极.有限典型群子空间轨道生成的格[M].科学出版社.1999.

共引文献5

同被引文献13

  • 1Wan Zhexian. Geometry of Classical Groups over Finite Fields Second Edition[M]. Science Press, Beijing, New York, 2002.
  • 2Lint J H. Wilson R M. A Course in Combinatorics(second edition) [M] . China Machine Press, 2004.
  • 3Wang Yangxian, Huo Yuanji, Ma Changli. Association Schemes of Matrices[M]. Science Press, Beijing, Jones and Bartlett Publishers, Sudbury, Massachusetts, 2011.
  • 4Frankl P., Wilson R. M. The ErdSs-Ko-Rado theorem for vector spaces[J]. JCombinatorial The- ory(A), 1986, 43: 223-236.
  • 5VAN LINT J H,WILSON R M. A course in combinatorics[M]. Second Edition. Beijing:China Machine Press, 2004:325-350.
  • 6YANGXIAN WANG, YUANJI HUO CHANGLIMA. Association schemes of matrices[M]. Beijing : Science Press, 2011 : 36-51.
  • 7WAN ZHEX1AN. Geometry of classical groups over finite fieldsb second edition[M]. Beijing,New York:Science Prees,2002:1-7.
  • 8Wan Zhexian.Geometry of classical groups over Finite fields(Second Edition)[M].Science Press,Beijing,2002.
  • 9Wang Kaishun,Guo Jun,Li Fenggao.Association schemes based on attenuated spaces[J].European Journal of Combinatorics,2010,31:297-305.
  • 10Wang Yangxian,Huo Yuanji,Ma Changli.Association Schemes of Matrices..2011.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部