期刊文献+

一种改进的截断展开法求非线性发展方程的精确解 被引量:2

An Improved Truncated Expansion Method for Finding Exact Solutions of Nonlinear Evolution Equations
原文传递
导出
摘要 给出了一种改进的截断展开法,利用此方法借助于计算机符号计算求得了Burgers方程和浅水长波近似方程组的精确解,其中包括孤子解,并讨论其具体应用.改进后的方法与以前的方法相比能得到方程的更多形式的精确解.所给出的改进的截断展开法也可以用来研究其它非线性发展方程的孤子解,是求非线性发展方程精确解的一种有效的直接方法. We give a new improved truncated expansion method. In order to introduce how to use this method; we discussed the Burgers equation and the approximate equation for long water waves and obtained these solutions with the computerized symbolic computation. We can obtain more exact solutions of nonlinear evolution equations vie this method.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第22期204-209,共6页 Mathematics in Practice and Theory
基金 北京市教育委员会科技发展计划研究项目(KM200510009008)
关键词 改进的截断展开法 精确解 计算机符号计算 improved truncated expansion method exact solutions computerized symbolic computation
  • 相关文献

参考文献15

  • 1Gao Y T, et al. Int J Mod Phys,2003,C14(9):1207-1222.
  • 2GaoYT, et al. Int J Mod Phys,2001,C12(10):1425-1430.
  • 3刘式适,付遵涛,刘式达,赵强.变系数非线性方程的Jacobi椭圆函数展开解[J].物理学报,2002,51(9):1923-1926. 被引量:100
  • 4郭柏灵.非线性演化方程[M].上海:上海科技教育出版社,1998:27-29.
  • 5Chun-Yi Zhang, et al. Chin Phys Lett.2007.24:1173-1174.
  • 6谷超豪,胡和生,周子翔.孤子理论中的Darboux变换及其几何应用[M].上海:上海科技出版社,1999.
  • 7Gao Y T, et al. Phys Plasmas,2003,10(11):4306-4313.
  • 8Tian B, et al. Phys Plasmas,2005,12(7):070703-070707.
  • 9Zhang Jiefang, Liu Yulu. Applied mathematics and mechanics[J]. Shanghai University (English, Edition), 2003, 24( 11 ) : 1259-1263.
  • 10Xiqiang Zhao, Dengbin Tang, Chang Shu. Mod Phys Lett,2005,B19(28.29):1703-1706.

二级参考文献11

共引文献107

同被引文献30

  • 1Miura M R. Baicklund transformation[M]. Berlin: Springer-Verlag, 1978.
  • 2Gu C H, Hu H S, Zhou Z X. Daxboux transformation in solitons theory and geometry applications[M]. Shanghai: Shanghai Science Technology Press, 1999.
  • 3Hirota R. Exact solution of the Korteweg-de Vries for multiple collisions of solutions[J]. Physical Review Letters, 1971, 27: 1192-1194.
  • 4Wang M L. Solitary wave solutions for variant Boussinesq equations[J]. Physics Letter A, 1996, 199: 169-172.
  • 5Wang M L, Zhou Y B, Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J]. Physics letter A, 1996, 216: 67-75.
  • 6Weiss J, Tabor M, Carnevale G. The Painleve Property for Partial Differential Equations[J]. Journal of Mathematical Physics, 1983, 24: 552-564.
  • 7Nayfeh A H. Perturbation Methods[M]. New York: John Wiley and Sons Inc, 1973.
  • 8Liu S K, Fu Z T, Liu S D, et al. Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J]. Physics Letter A, 2001, 289: 69-74.
  • 9Fu Z T, Liu S K, Liu S D, et al. The JEFE method and periodic solutions of two kinds of nonlinear wave equations[J]. Communications in Nonlinear Science & Numerical Simulation, 2003, 8: 67-75.
  • 10Yan Z Y. The extended Jacobian elliptic functions expansion method and its application in the generalized Hirota-Satsuma coupled KdV systems[J]. Chaos, Solitons and Fractals, 2003, 15(3): 575-583.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部