期刊文献+

成年哺乳动物中枢神经系统损伤后神经元轴突再生的调节(英文) 被引量:3

Regulation of axonal regeneration following the central nervous system injury in adult mammalian
下载PDF
导出
摘要 成年哺乳动物中枢神经系统损伤后修复十分困难,常导致严重的持续性神经功能障碍,因此中枢神经系统损伤修复的研究成为当今热点。最新研究证明,中枢神经系统神经元轴突再生障碍不是因为其内在的再生能力不足,而是与受伤神经元所处的状态及生长环境有关。调节损伤神经元轴突再生至少应该包括如下步骤:维持神经元存活并处于一种生长状态,防止胶质瘢痕形成,清除存在于髓鞘碎片间的神经再生阻滞因子及指引轴突再生方向。本文对近年来有关成年哺乳动物中枢神经系统神经元轴突再生及其调节的研究成果进行综述。 It has been well established that the recovery ability of central nervous system (CNS) is very poor in adult mammals. As a result, CNS trauma generally leads to severe and persistent functional deficits. Thus, the investigation in this field becomes a "hot spot". Up to date, accumulating evidence supports the hypothesis that the failure of CNS neurons to regenerate is not due to their intrinsic inability to grow new axons, but due to their growth state and due to lack of a permissive growth environment. Therefore, any successful approaches to facilitate the regeneration of injured CNS axons will likely include multiple steps: keeping neurons alive in a certain growth-state, preventing the formation of a glial scar, overcoming inhibitory molecules present in the myelin debris, and giving direction to the growing axons. This brief review focused on the recent progress in the neuron regeneration of CNS in adult mammals.
出处 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第6期395-400,共6页 神经科学通报(英文版)
基金 supported by the National Natural Science Foundation of China(No.30571909,No.30872666) the Youth Teacher Foundation of Jiangsu Pro-vince(No.BU134701) China,and the Medical Development Foundation of Soochow University(No.EE134615)
关键词 中枢神经系统 成年 神经元轴突再生 调节 脑损伤 central nervous system adult regeneration regulation brain injury
  • 相关文献

参考文献26

  • 1Domeniconi M, Filbin MT. Overcoming inhibitors in myelin to promote axonal regeneration. J Neurol Sci 2005, 233: 43-47.
  • 2Schimchowitsch S, Cassel JC. Polyamine and aminoguanidine treatments to promote structural and functional recovery in the adult mammalian brain after injury: a brief literature review and preliminary data about their combined administration. J Physiol Paris 2006, 99: 221-223.
  • 3Cui Q. Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 2006, 33: 155-179.
  • 4Kleindienst A, McGinn MJ, Harvey HB, Colello RJ, Hamm RJ, Bullock MR. Enhanced hippocampal neurogenesis by intraventricular S100B infusion is associated with improved cognitive recovery after traumatic brain injury. J Neurotrauma 2005, 22: 645-655.
  • 5Scheff SW, Price DA, Hicks RR, Baldwin SA, Robinson S, Brackney C. Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. J Neurotrauma 2005, 22: 719- 732.
  • 6Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, et al. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 2006, 28: 81-91.
  • 7Cooper-Kuhn CM, Winkler J, Kuhn HG. Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 2004, 77: 155-165.
  • 8Twiss JL, Chang JH, Schanen NC. Pathophysiological mechanisms for actions of the neurotrophins. Brain Pathol 2006, 16: 320-332.
  • 9Lindholm P, Voutilainen MH, Lauren J, Peranen J, Leppainen VM, Andressoo JO, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 2007, 448: 73-77.
  • 10Ledda F, Paratcha G, Sandoval-Guzman T, Ibanez CF. GDNF and WRαI promote formation of neuronal synapses by ligandaduced cell adhesion. Nat Neurosci 2007, 10: 293-300.

同被引文献39

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部