期刊文献+

基于半监督流形学习的人脸识别方法 被引量:7

Face Recognition Based on Semi-supervised Manifold Learning
下载PDF
导出
摘要 如何有效地将流形学习(Manifold learning,ML)和半监督学习(Semi-supervised learning,SSL)方法进行结合是近年来模式识别和机器学习领域研究的热点问题。提出一种基于半监督流形学习(Semi-supervised manifold learning,SSML)的人脸识别方法,它在部分有标签信息的人脸数据的情况下,通过利用人脸数据本身的非线性流形结构信息和部分标签信息来调整点与点之间的距离形成距离矩阵,而后基于被调整的距离矩阵进行线性近邻重建来实现维数约简,提取低维鉴别特征用于人脸识别。基于公开的人脸数据库上的实验结果表明,该方法能有效地提高人脸识别的性能。 Recently,manifold learning and semi-supervised learning are two hot topics in the field of machine learning. However, there are only a few researches on how to incorporate semi-supervised learning and manifold learning, especially for face recognition. A new semi-supervised manifold learning for face recognition was proposed. This method relies on the distance matrix formed by both labeled and unlabeled samples, and then the local linear embedding (LLE) method was used to extract discriminative manifold features according to the modified distance matrix.The proposed method produces better classification performance which captures the intrinsic manifold structure collectively revealed by labeled and unlabeled samples. Experimental results on public face databases show that the proposed method can improves face classification performance effectively.
出处 《计算机科学》 CSCD 北大核心 2008年第12期220-223,共4页 Computer Science
基金 重庆市自然基金资助项目(NO.CSTC2006BB215)
关键词 流形学习 半监督学习 局部线性嵌入 维数约简 人脸识别 Manifold learning, Semi-supervised learning, Local linear embedding (LLE), Dimensionality reduction, Face recognition
  • 相关文献

参考文献13

  • 1郑宇杰,杨静宇,吴小俊,王卫东,张丽丽.一种新的核线性鉴别分析算法及其在人脸识别上的应用[J].计算机科学,2006,33(7):223-226. 被引量:3
  • 2罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 3Yang J, Zhang D, Yang J Y. Globally maximizing, locally minimizing: Unsupervised Discriminant Projection with applications to faee and palm biornetrics[J]. IEEE Tran. Pattern Analysis and Machine Intelligence, 2007,29 (4) : 650-664
  • 4Roweis S T , Saul L K. Nonlinear dimensionality reduction by Locally Linear Embedding[J]. Science, 2000, 290(5500) : 2323- 2326
  • 5Tenenbaum J B , Silva V D, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000,290(5500) :2319 -2323
  • 6Belkin M , Niyogi P. Laplacian Eigenmaps and spectral tech - niques for embedding and clustering [C]. Advances in Neural Information Processing Systems. Cambridge, MA, USA: The MIT Press, 2002,14 : 585-591
  • 7Okun O, Kouropteva O. Supervised locally linear embedding algorithm [C]//Proc. of the Tenth Finnish Artificial Intelligence Conference. Finland; FAIC, 2002:50- 61
  • 8Zhu X J. Semi supervised learning literature survey [R]. University of Wisconsin-Madison. Tech Rep:1530. December 2007
  • 9YangX, Fu H Y, Zha H Y. Semi - supervised nonlinear dimensionality reduction[C] ffProc, of the 23rd International Conference on Machine Learning. Pittsburgh, Pennsylvania, 2006, 148:1065-1072
  • 10Belkin M, Niyogi P, Sindhwaniyd V. Manifold regularization: A geometric framework for learning from examples[J].Journal of Machine Learning Research, 2006,7 (11) : 2399-2434

二级参考文献72

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3罗四维,赵连伟.基于谱图理论的流形学习算法[J].计算机研究与发展,2006,43(7):1173-1179. 被引量:76
  • 4Vapnik V. The Nature of Statistical Learning Theory [M].Springer, N Y, 1995
  • 5Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998,10(5) : 1299- 1319
  • 6Bach F R, Kernel M I. Independent Component Analysis [J].Journal of Machine Learning Research, 2002,3:1 - 48
  • 7Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [A]. In: IEEE International Workshop on Neural Networks for Signal Processing IX, Madison (USA), August,1999. 41-48
  • 8Mika S,Ratsch G,Scholkopf B,et al. Invariant feature extraction and classification in kernel spaces [A]. Advances in Neural Information Processing Systems 12. Cambridge: MIT Press, 1999
  • 9Baudat G, Anouar F. Generalized discriminant analysis using a kernel approach [J]. Neural Computation, 2000,12 (10) : 2385-2404
  • 10Muller K R,Mika S, Ratsch G, et al. An introduction to kerne-based learning algorithms [J]. IEEE Transactions on Neural Networks, 2001,12(2) :181-201

共引文献90

同被引文献44

  • 1张晓艳,王挺,陈火旺.命名实体识别研究[J].计算机科学,2005,32(4):44-48. 被引量:66
  • 2闫宏,张兴周,刘晓瑞.基于特征脸的人脸识别系统[J].应用科技,2007,34(4):20-23. 被引量:4
  • 3WitoldPedrycz.基于知识的聚类:从数据到信息粒[M].于福生,译.北京:北京师范大学出版社,2008:79-87.
  • 4陈才扣,黄建平,刘永俊.基于泛滑动窗与2DLDA的单样本人脸识别[J].计算机应用,2007,27(11):2793-2796. 被引量:8
  • 5Kouropteva O,Okun O,Pietikainen M.Supervised locallylinear embedding algorithm for pattern recognition[].Lecture Notes in Computer Science.2003
  • 6F.C.Wu,Z.Y.Hu.The LLE and a linear mapping[].Pattern Recognition.2006
  • 7Tjong Kim Sang E F, De Meulder F. Introduction to the CoNLL- 2003 shared task: Language-lndependent named entity recogni- tion[C] // Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Associa- tion for Computational Linguistics, 2003 : 142-147.
  • 8McCallum A, Li W. Early results for named entity recognition with conditional random fields, feature induction and web-en- hanced lexicons[C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Association for Computational Linguistics, 2003 : 188-191.
  • 9Nadeau D, Sekine S. A survey of named entity recognition and classification[J]. Lingvisticae Investigationes, 2007,30 (1) : 3-26.
  • 10Tjong Kim Sang E F, De Meulder F. Introduction to the CoNLL- 2003 shared task: Language-independent named entity recogni- tion[C]//Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003-Volume 4. Associa- tion for Computational Linguistics, 2003 : 142-147.

引证文献7

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部