期刊文献+

基于APSO算法的电力系统无功优化 被引量:1

Power System Reactive Power Optimization Based on Adaptive Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 针对粒子群优化算法易早熟收敛的缺点,提出一种自适应粒子群优化算法(ASPO),将物种的概念引入种群多样性测度中,利用种群多样性信息对惯性权重进行非线性的调整,并引入速度变异算子和位置交换算子,增强算法的全局收敛性能。将APSO算法应用于电力系统无功优化,对IEEE-30节点系统进行仿真计算,仿真结果表明,系统网损从5.988 MW降到4.889 MW,下降率为18.36%,算法的收敛精度和收敛稳定性均较当前常用方法有明显的提高。 This paper presents Adaptive Particle Swarm Optimization(APSO) algorithm to solve the precocious convergence problem of Particle Swarm Optimization(PSO) algorithm. The notion of species is introduced into population diversity measure. Inertia weight is nonlinearly adjusted by using population diversity information. Velocity mutation factor and position crossover factor are both introduced and the global performance is improved. The algorithm is applied in reactive power optimization. Simulation results of the standard IEEE-30-bus power system indicate that active power losses are reduced form 5.988 MW to 4.889 MW(18.36% reduction) and APSO is superior to current methods for finding the best solution, in terms of both solution quality and algorithm robustness.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第23期17-19,共3页 Computer Engineering
基金 国家自然科学基金资助项目(60274009) 教育部博士点基金资助项目(20020145007)
关键词 粒子群优化 种群多样性 自适应变异 无功优化 Particle Swarm Optimization(PSO) population diversity adaptive mutation reactive power optimization
  • 相关文献

参考文献5

  • 1郭创新,朱承治,赵波,曹一家.基于改进免疫算法的电力系统无功优化[J].电力系统自动化,2005,29(15):23-29. 被引量:38
  • 2Miranda V, Fonseca N. EPSO-best-of-tow-worlds Meta-heuristic Applied to Power System Problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation. Hawaii, USA: IEEE Press, 2002.
  • 3Wu Q H, Cao Y J, Wen J Y. Optimal Reactive Power Dispatch Using an Adaptive Genetic Alforithm[J]. Electrical Power & Energy System, 1998, 20(8): 563-569.
  • 4Sinha N, Chakrabarti R, Chattopadhyay P K. Evolutionary Programming Techniques for Economic Load Dispatch[J]. IEEE Trans. on Evolutionary Computation, 2003, 7(1): 83-94.
  • 5Das D B, Patvardhan C. Reactive Power Dispatch with a Hybrid Stochastic Search Technique[J]. Electrical Power & Energy System, 2002, 24(9): 731-736.

二级参考文献5

  • 1[6]URDANTA A J, GOMEZ J F, SORRENTINO E et al. A Hybrid Genetic Algorithm for Optimal Reactive Power Planning Based Upon Successive Linear Programming. IEEE Trans on Power Systems, 1999, 14(4): 1292-1298.
  • 2[14]WU Q H, CAO Y J, WEN J Y. Optimal Reactive Power Dispatch Using an Adaptive Genetic Algorithm. Electric Power Energy System, 1998, 20(8): 563-569
  • 3[15]LAI L L, MA J T. Application of Evolutionary Programming to Reactive Power Planning Comparison with Nonlinear Programming Approach. IEEE Trans on Power Systems,1997, 12(1): 198-204.
  • 4[16]DASD B, PATVARDHAN C. Reactive Power Dispatch with a Hybrid Stochastic Search Technique. Electric Power Energy System, 2002, 24(9): 731-736.
  • 5[17]ZIMMERMAN R, GAN D. MATPOWER: A MATLAB Power System Simulation Package. http: //www. cornell. edu/matpower.

共引文献37

同被引文献11

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部