期刊文献+

基于像素分类的运动目标检测算法 被引量:3

Moving Objects Detection Algorithm Based on Pixel Classification
下载PDF
导出
摘要 针对复杂环境下运动目标检测提出一种基于像素分类的运动目标检测算法。该算法通过亮度归一化对图像序列进行预处理,用以降低光照变化造成的误检,根据场景中不同像素点的特点,对图像进行分类处理,单模态类的像素用中值法进行背景建模,多模态类的像素用混合高斯模型建模。实验结果表明,该算法与传统的高斯建模法相比,减少了运算量,更易于应用在实时系统中。 A novel algorithm for moving objects detection based on pixel classification is proposed. This algorithm preprocesses the images with illuminate standard in order to decline detection mistakes caused by illuminant changes. The pixels are classified by its characteristics into the single-model and the multi-model. The former uses median method for background modeling while the later uses GMM. The experiments show that this algorithm, compared with GMM, is computational efficient and can be used for real-time systems easily.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第23期205-207,226,共4页 Computer Engineering
基金 国家“863”计划基金资助项目(2006AA01Z127) 国家自然科学基金资助项目(60572152) 陕西省自然科学基金资助项目(2005F26)
关键词 背景差分 高斯混合模型 中值法 运动目标检测 像素分类 background subtraction GMM median method moving objects detection pixel classification
  • 相关文献

参考文献6

  • 1Jong B K, Hang J K. Efficient Region-based Motion Segmentation for a Video Monitoring System[J]. Pattern Recognition Letters, 2003, 24(1): 113-128.
  • 2Sasa G, Loncaric S. Spatio-temporal Image Segmentation Using Optical Flow and Clustering Algorithm[C]//Proc. of the 1st Int'l Workshop on Image and Signal Processing and Analysis. Pula, Croatia: IEEE Press, 2000: 63-68.
  • 3计文平,郭宝龙,丁贵广.基于虚拟线圈的光流法车流量检测[J].计算机仿真,2004,21(1):109-110. 被引量:21
  • 4Stauffer C, Crimson W. Learning Patterns of Activity Using Real-time Tracking[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.
  • 5Zhou Quming, Aggarwal J. Tracking and Classifying Moving Objects From Videos[C]//Proc. of IEEE Workshop on Performance Evaluation of Tracking and Surveillance. Hawaii, USA: [s. n.], 2001.
  • 6Francois A, Medion G. Adaptive Color Background Modeling for Real-time Segmentation of Video Streams[C]//Proc. of Internationalon Imaging Science Systems and Technology. Las Vegas, USA: [s. n.], 1999.

二级参考文献1

  • 1余松煜 周源华 等.数字图像处理[M].电子工业出版社,1987..

共引文献20

同被引文献17

  • 1艾斯卡尔.艾木都拉,陈颖,贾振红.基于概率加权求和投影的多维信号检测技术研究[J].电子学报,2005,33(7):1331-1333. 被引量:4
  • 2Blostein S D, Huang T S. Detecting Small Moving Objects in Image Sequences Using Sequential Hypothesis Testing[J]. IEEE Transactions on Signal Processing, 1991, 39(7): 1611-1629.
  • 3Tantaratana S. Asymptotic Efficiencies of Truncated Sequential Tests[J]. IEEE Transactions on Information Theory, 1982, 28(6): 911-923.
  • 4Stauffer C, Grimson W. Adaptive Background Mixture Models for Real-time Tracking[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE Press, 1999: 246-252.
  • 5Lee Dar-Shyang. Effective Gaussian Mixture Learning for Video Background Subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832.
  • 6Zivkovic Z, van der Heijden F. Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction[J]. Pattern Recognition Letters, 2006, 27(7): 773-780.
  • 7Bouttefroy P L M, Bouzerdoum A, Phung S L, et al. On the Analysis of Background Subtraction Techniques Using Gaussian Mixture Models[C]//Proc. of IEEE International Conference on Acoustics Speech and Signal Processing. Dallas, USA: IEEE Press, 2010.
  • 8Dickinson P, Hunter A, Appiah K. A Spatially Distributed Model for Foreground Segmentation[J]. Image and Vision Computing, 2009, 27(9): 1326-1335.
  • 9Huang Tianci, Qiu Jingbang, Sakayori T. Motion Detection Based on Background Modeling and Performance Analysis for Outdoor Surveillance[C]//Proc. of IEEE International Conference on Computer Modeling and Simulation. Macao, China: [s. n.], 2009.
  • 10周箴毅,胡福乔.基于背景建模的动态场景目标检测[J].计算机工程,2008,34(24):203-205. 被引量:4

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部