期刊文献+

RSSI信号滤波技术在机器人导航中的应用 被引量:3

Implementation of RSSI filter technique in robot navigation
下载PDF
导出
摘要 针对RSSI方式对移动节点进行导航定位时会引入较大的模型误差的问题,提出了一种高效的硬件分组粒子滤波算法对节点间RSSI信号进行滤波预处理,确保RSSI值和节点间距离呈单调函数关系。直接利用RSSI信息和网络拓扑结构实现机器人定位,避免将RSSI值转换为几何距离时带来的模型误差。将滤波处理和导航计算分散到多个信标节点上执行以提高算法实时性,在导航实施之前无需精确已知各信标节点的几何坐标,免去了人工部署信标节点的步骤,可适合网络拓扑结构或环境参数频繁变化的场合,该方法在现场实验中导航控制精度可达到0.6 m。 A group improved particle filter algorithm was designed to preprocess the RSSI (received singal strength indicator) signal which includes plenty of background noise. In order to avoid the model error, the coordinate space which was quantized by using RSSI value was used to describe the robot' s state and target position. The navigation system consists of some beacon nodes, and each of them is a distributed control unit. Then the navigation control center gathers the control information from each beacon nodes and calculates the final outputs for mobile robot. The coordination of beacon node is not needed to know before navigation, and it allow for adaptation to dynamic or unknown scenarios. The experimental indicate that an accuracy of 0.6 m is attainable with this method.
出处 《电机与控制学报》 EI CSCD 北大核心 2008年第6期717-722,共6页 Electric Machines and Control
基金 国家自然科学基金(60572010) 黑龙江省自然科学基金(F2007-08)
关键词 无线传感器网络 粒子滤波 自主导航 接收信号强度 wireless sensor network particle filters autonomous navigation received singal trength indications
  • 相关文献

参考文献12

  • 1BURAGOHAIN Chiranjeeb, AGRAWAL Divyakant, SURI Subhash. Distributed navigation algorithms for sensor networks[ C]// Proceedings of the IEEE International Conference on Computer Communications. Washington: IEEE Press, 2006:414 -423.
  • 2KORTENKAMP D, WEYMOUTH T. Topological mapping for mobile robots using a combination of sonar and vision sensing[ C ]// Proceedings of the 12th National Conference on Arificial Intelligence. Seattle:AAAl, 1994:979-984.
  • 3FOX D. Markov localization : A probabilistic framework for mobile robot localization and naviagation[ D]. Bonn: Institute of Computer Science III. University of Bonn, 1998.
  • 4DELLAERT F, FOX D, BURGARD W, et al. Monte carlo localization for mobile robots[ C ]//Proceedings of the 1999 IEEE International Conference on Robotics and Automation. Detroit:Piscataway, 1999 : 1322 - 1328.
  • 5SIMMONS R, KOENIG S. Probabilistic robot navigation in partially observable environments [ C ]//Proceedings of the international Joint Conference on Artifwial Intelligence. Quebec: Palais, 1995 : 1080 - 1087.
  • 6RABBAT M G, NOWAK R D. Decentralized source localization and tracking [ C ]//Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. Montreal : Piscataway, 2004 : 921 - 924.
  • 7MAO Guoqiang, BRIAN D O. Anderson, BARIS Fidan. Path loss exponent estimation for wireless sensor network localization [ J ]. Computer Networks. 2006, 50(17): 3485-3502.
  • 8THEODORE S R. Wireless Communications: Principles and Practice[ M]. Addison Wesley:Prentice Hall Press,2001,69 - 138.
  • 9CARPENTER J, CLIFFORD P, FEARNHEAD P. Improved particle filter for nonlinear problems [ C ] //IEE Proceedings : Radar, Sonar and Navigation. London : Stevenage, 1999:2 - 7.
  • 10ARULAMPALAM S, MASKELL S, GORDON N. A tutorial on particle filters for online nonlinear/non2Gaussian Bayesian tracking [ J ]. IEEE Trans. Signal Processing, 2002, 50 ( 2 ) : 74 - 188.

同被引文献34

  • 1王艳美,马怀俭.基于蓝牙技术的自动测试系统的实现[J].哈尔滨理工大学学报,2005,10(6):103-105. 被引量:2
  • 2孙佩刚,赵海,罗玎玎,张晓丹,尹震宇.智能空间中RSSI定位问题研究[J].电子学报,2007,35(7):1240-1245. 被引量:75
  • 3Awad A, Frunzke T, Dressler E Adaptive distance estimation and localization in WSN using RSSI measures[C]. The 10th Euromicro Conf on Digital System Design Architectures. Lubeck: IEEE Press, 2007:471-478.
  • 4Youngbae Kong, Younggoo Kwon, Gwitae Park. Robust localization over obstructed interferences for inbuilding wireless applications[J]. IEEE Trans on Consumer Electronics, 2009, 55(1): 105-111.
  • 5Ahn H S, Yu W. Environmental-adaptive RSSI-based indoor localization[J]. IEEE Trans on Automation Science and Engineering, 2009, 6(4): 626-633.
  • 6Paul A S, Wan E A. RSSI-Based indoor localization and tracking using sigma-point Kalman smoothers[J]. IEEE J of Selected Topics in Signal Processing, 2009, 3(5): 860- 873.
  • 7Ren H, Meng Q H. Power adaptive localization algorithm for wireless sensor networks using particle filter[J]. IEEE Trans on Vehicular Technology, 2009, 58(5): 2498-2508.
  • 8Bosisio A V. RSSI based localization and tracking algorithm for indoor environments[C]. Int Conf on Electromagnetics in Advanced Application. Torino: IEEE Press, 2009: 469-472.
  • 9Saxena M, Gupta P, Jain B N. Experimental analysis of RSSI-based location estimation in wireless sensor networks[C]. Int Conf on Communication Systems Software and Middleware and Workshops. Bangalore: IEEE Press, 2008: 503-510.
  • 10Catovic A, Sahinoglu Z. The Cramer-Rao bounds of hybrid TOA/RSS and TDOA/RSS location estimation schemes[J]. IEEE Communications Letters, 2004, 8(10): 626-628.

引证文献3

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部