期刊文献+

四量子可逆逻辑电路快速综合算法 被引量:14

Fast Algorithms for 4-qubit Reversible Logic Circuits Synthesis
下载PDF
导出
摘要 量子可逆逻辑电路综合是以较小量子代价自动构造所求量子可逆逻辑电路.本文提出了一种新颖高效的4量子电路综合算法,巧妙构造置换的最短编码,通过对量子电路进行特定拓扑变换,无损压缩n量子最优电路占用内存空间近2×n!倍,通过对已生成最优电路的双向级联,可使用多种量子门,采用最小长度标准,以极高效率生成较长的4量子电路,如率先生成基于控制非门、非门、Toffoli门库的全部前8层共3120218828个电路,还可快速综合任意长度不超过16的最优电路,并对4量子标准测试电路进行快速且全面的优化. Synthesis of quantum reversible logic circuits means to automatically construct desired quantum reversible logic circuit with minimal quantum cost. We present a novel and efficient algorithm which can construct almost all optimal 4-qubit reversible logic circuits with various types of gates and minimum length cost based on constructing the shortest coding and the specific topological compression, whose lossless compression ratios of the space of n-qubit circuits is near2 × n!. We firstly have created all 3120218828 optimal 4-qubit circuits whose length is less than 9 for the Controlled-Not gate, NOT gate and Toffoli gate library, and our method can achieve 16 steps through cascading created circuits. Our algorithm can not only synthesizes all the 4-qubit bench- mark circuits, but also runs extremely fast.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第11期2081-2089,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.60572071) 国家自然科学基金重大研究计划(No.90412014) 江苏省自然科学基金(No.BK2007104,BK2008209) 江苏省高校自然科学基金(No.06KJB520137)
关键词 4量子 可逆逻辑综合 最短编码 拓扑压缩 量子计算 4-qubit reversible logic synthesis shortest coding topological compression quantum computing
  • 相关文献

参考文献11

  • 1D Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer [J] .Proc Royal Soc London, 1985,400(1818) :97 - 117.
  • 2E Fredkin, T Toffoli. Conservative logic [ J]. International Journal of Theoretical Physics, 1982,21:219 - 253.
  • 3X Y Song,G W Yang,M Perkowski, et al.Algebraic characteristics of reversible gates [ J ]. Theory of Computing Systems,2005,39(2):311- 319.
  • 4D Maslov, G W Dueck, D M Miller. Toffoli network synthesis with templates [ J ]. IEEE Trans on Circuits and Systems-I, 2005,24(6) : 807 - 817.
  • 5W Q Li,H W Chen, Z Q Li. Application of semi-template in reversible logic circuit [A]. Proceedings of the 11 th International Conference on CSCWD [ C]. Melbourne, Australia, 2007. 155 - 161.
  • 6P Gupta, A Agrawal, N K Jha. An algorithm for synthesis of reversible logic circuits [ J].IEEE Trans on Circuits and Systems-I,2006,25(11) :807 - 817.
  • 7V V Shende, A K Prasad, I L Markov, et al. Synthesis of reversible logic circuits [J]. IEEE Trans on Circuits and Systems-I, 2003,22 (6) : 723 - 729.
  • 8G W Yang,X Y Song,M Perkowski, et al. Fast synthesis of exact minimal reversible circuits using group theory [ A ]. Proceedings of IEEE ASP-DAC 2005 [ C ]. Shanghai, China, 2005. V2,18 - 21.
  • 9G W Yang,X Y Song, W N N Hung, M Perkowski. Bi-directional synthesis of 4-bit reversible circuits [J ]. The Computer Journal, 2008,51 (2) : 207 - 215.
  • 10G L Long, Y Sun. Efficient scheme for initializing a quantum register with an arbitrary superposed state [J]. Phys Rev A, 2001,64(1) :014303:1 - 8.

同被引文献116

  • 1吕欣,冯登国.背包问题的量子算法分析[J].北京航空航天大学学报,2004,30(11):1088-1091. 被引量:6
  • 2管致锦,秦小麟,葛自明.量子电路可逆逻辑综合的研究及进展[J].南京邮电大学学报(自然科学版),2007,27(2):24-27. 被引量:4
  • 3M A Nielsen,I L Chuang.Quantum Computation and Quantum Information[M].Cambridge,England:Cambridge University Press,2000.4-40.
  • 4C Bennett.Logical reversibility of computation[J].IBM Journal of Research and Development,1973,17(6):525-532.
  • 5A Barcnco,C Bennett,et al.Elementary gates for quantum computation[J].Physical Review A,1995,52(5):3457-3467.
  • 6D Maslov,G W Dueck,D M Miller.Toffoli network synthesis with templates[J].IEEE Transactions on CADICS,2005,24(6):807-817.
  • 7D M Miller,D Maslov,G W Dueck.A Transformation based algorithm for reversible logic synthesis.Proceedings-Design Automation Conference.New York:Institute of Electrical and Electronics Engineers Inc,2003.318-323.
  • 8V V Shende,A K Prasad,I L Markov,et al.Synthesis of reversible logic circuits.IEEE Transactions on CADICS,2003,22(6):710-722.
  • 9G W Yang,X Y Song,et al.Fast synthesis of exact Minimal reversible circuits using group theory.Proceedings of the 2005 Conference on Asia South Pacific Design Automation.New York:ACM,2005.1002-1005.
  • 10G W Yang,F Xie,X Y Song,et al.A constructive algorithm for reversible logic synthesis.2006 IEEE Congress on Evolutionary Computation.Piscataway:Inst of Elec and Elec Eng Computer Society,2006.2416-2421.

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部