期刊文献+

高光谱图像分类的全面加权方法研究 被引量:3

RESEARCH ON ALL-AROUND WEIGHTING METHODS OF HYPERSPECTRAL IMAGERY CLASSIFICATION
下载PDF
导出
摘要 像元分类是高光谱数据分析的最基本、最重要内容之一,而基于支持向量机(SVM)的分类方法以其高效性得以广泛使用.原始的SVM分类模型中并没有体现出样本、特征、类别对于分类或分析的不同重要性,从而影响了处理效果.为此,将各样本偏离其类中心的距离映射为样本加权系数;将类内散度矩阵应用于特征加权方法;将SVM方程系统中的单位矩阵对角元素加以调整来完成类别加权.不同加权方法既可以单独使用也可以联合使用.实验表明,所提出的加权方法有助于进一步提高高光谱图像的分类效果. Pixel classification is one of the most basic and important contents of hyperspectal imagery (HSI) analysis, and SVM based method is very popular in HSI classification for its high efficiency. The importance of samples, features, and classes, however, is not reflected in original SVM based classification model, and the classification effect is deteriorated consequently, in this study, the distance of each sample deviating from its class-center was mapped into the sample as weighting coefficient. And within-class scatter matrix was introduced into the feature weighting measure, and the diagonal elements in SVM equation system were adjusted for the purpose of class weighting. The weighted methods can be used solely or jointly. Experiments show that the proposed weighting methods are helpful to improve the effect of HSI classification.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2008年第6期442-446,共5页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60802059) 水下智能机器人技术国防科技重点实验室资助项目
关键词 高光谱图像 分类 支持向量机 加权 byperspectral imagery(HSI) classification support vector machine(SVM) weighting
  • 相关文献

参考文献9

  • 1罗欣,郭雷,刘震.基于IPCT/3-D Tarp的高光谱图像无损压缩[J].红外与毫米波学报,2007,26(6):443-446. 被引量:1
  • 2谭克龙,周日平,万余庆,李先华.地下煤层燃烧的高光谱及高分辨率遥感监测方法[J].红外与毫米波学报,2007,26(5):349-352. 被引量:14
  • 3阎福礼,王世新,周艺,肖青,祝令亚,王丽涛,焦云清.利用Hyperion星载高光谱传感器监测太湖水质的研究[J].红外与毫米波学报,2006,25(6):460-464. 被引量:21
  • 4Evqeniou T, Pontil M. Support Vector Machines : Theory and Applications [ M ]. Lecture Notes in Computer Science, Advanced Lectures. 2001,2049,249-257.
  • 5Wu Hsu-Kun, ChenPao-Jung, Hsieh Jer-Guang. Simple algorithms for least square support vector machines [ C ]. IEEE International Conference on Systems, Man and Cybernetics, 2006,6 : 5106-5111.
  • 6Suykens J A K, Brabanter J D, Lukas L, et al. Weighted least squares support vector machines: robustness and sparse approximation[ J]. Neurocomputing ,2002 ,85-105.
  • 7Song Q, Hu W J, Xie W F. Robust support vector machine with bullet hole image classification [ J ]. IEEE Trans. on Systems, Man and Cybernetics, Part C. 32, 2002, 440-448.
  • 8Ji B, Chang C I, Jensen J O, et al. Unsupervised constrained linear Fisher's discriminant analysis for hyperspectral image classification[ C]. In 49th Annu. Meeting, SPIE Int. Symp. Optical Science and Technology, Imaging Spectrometry IX (AM105), Denver, CO. , 2004,49:2-4.
  • 9Chang C I, Ji B H. Weighted abundance constrained linear spectral mixture analysis [ J ]. IEEE Transactions on Geoscience and Remote Sensing,2006,44:378-388.

二级参考文献34

共引文献33

同被引文献48

  • 1张锦水,何春阳,潘耀忠,李京.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57. 被引量:131
  • 2Bioucas Dias J M, Nascimento J M P. Hyperspectral subspace identification [J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2435-2445.
  • 3He J, Zbang I., Wang Q, et at. Using diffusion geometric coordinates for hyperspectral imagery representation [J]. IEEE Geoscienees and Remote Sensing Letters, 2009, 6 (4) : 767-771.
  • 4Zhang L P, Huang X. Object-oriented subspace analysis for airborne hyperspeetral remote sensing imagery [J]. Neurocomputing, 2009, 73(4/6): 927-936.
  • 5Dianat R, Kasaei S. Dimension reduction of remote sensing images by incorporating spatial and spectral properties [J]. International Journal of Electronics and Communications, 2010, 64(8): 729-732.
  • 6Turk M, Pentland A. Eigenfaces for recognition [J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 7Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces Fisherfaces: recognition using class specific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
  • 8Tenenbaum J B, de Silva V, l.angford J C. A global geometric framework for nonlinear dimensionality reduction [J]. Science, 2000, 290(5500): 2319-2323.
  • 9Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290 (5500) : 2323-2326.
  • 10He X F, Cai D, Yan S C, et al. Neighborhood preserving embedding [C] //Proceedings of the 10th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2005, 2:1208-1213.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部