期刊文献+

二维位势问题快速多极虚边界元解 被引量:1

Fast Multipole Virtual Boundary Element Method for Solving Two-dimensional Potential Problems
下载PDF
导出
摘要 快速多极虚边界元法是近期发展起来的一种数值算法;其对大规模复杂问题的计算,能在保证求解精度的前提下,使计算量和存储量均比常规虚边界元法具有在数量级上的减少.本文给出了二维位势问题快速多极虚边界元法的求解思想,并进行了数值论证;由文中的数值结果可知,本文方法具有可行性,且有较好的计算精度. Fast muhipole VBEM (virtual boundary element method) is a new algorithm developed for VBEM recently. The computational cost and memory requirement of fast multipole VBEM is lower an order of magnitude than that of traditional VBEM without changing accuracy, which makes it possible to solve large scale problems on a desktop. In this paper, the problcms of 2D potential are studied. Numerical examples are presented to demonstrate the feasibility, accuracy and efficiency of the method.
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第6期725-729,共5页 Journal of Jiamusi University:Natural Science Edition
关键词 快速多极算法 虚边界元法 位势问题 fast multipole method (FMM) virtual boundary element method (VBEM) 2D potential problems
  • 相关文献

参考文献14

  • 1许强,孙焕纯.厚壳三维分析的虚边界元最小二乘法[J].大连理工大学学报,1996,36(4):413-418. 被引量:20
  • 2许强,孙焕纯.虚边界元最小二乘配点法[J].计算力学学报,1997,14(2):166-173. 被引量:16
  • 3孙焕纯,许强,张立洲.数理方程的虚边界元法及其与相关方法的关系[J].大连理工大学学报,1999,39(2):183-190. 被引量:16
  • 4G J Burges, E Mahajerin. A Comparison of The Boundary Element and Superposition Methods[J]. Comput. Structures, 1984, 19(2): 697 - 705.
  • 5C A Brebbia, J C F Telles, L C Wrobel. Boundary Element Techniques Theory and Application in Engineering[M]. Berlin: Springveriag, 1984:177-236.
  • 6Timoshenko SP, Gooher JN. Theory of Elasticity (3rd edn)[M]. McGraw-Hill: New York, 1987.
  • 7L Greengard, V Rokhlin. A Fast Algorithm for Particle Sinmlations [J]. Comput. Phys. , 1985, 60: 187-207.
  • 8H Cheng, L Greengard. A Fast Adaptive Multipole Algorithm in Three Dimensions[J]. Comput. Phys. , 1999, 155: 468-498.
  • 9N Nishimura, K Yoshida, S Kobayashi. A Fast Muhipole Boundary Integral Equation Method for Crack Problems in 3D[J]. Engineering Analysis with Boundary Elements, 1999, (23): 97- 10.
  • 10Y Saad, M H Schultz. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems [ J ]. SIAM J. Sci. Star. Comput. , 1986, 7(3): 854-860.

二级参考文献36

共引文献29

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部