期刊文献+

基于粒子群算法的自适应滤波器研究及应用

Researching and Application of Adaptive Filter Based on PSO Algorithm
下载PDF
导出
摘要 针对神经网络自适应滤波器易于陷入局部极小的缺陷,采用抑制局部最优的粒子群算法优化神经网络的权系数,设计了基于改进粒子群算法训练的三层神经网络的自适应滤波器,并将其应用于自适应噪声抵消器.仿真表明,该系统与传统自适应噪声抵消系统相比具有很好的噪声抵消能力,信噪比大大提高. In order to restrain the traditional adaptive filter based on neural network from trapping in local optimum, and an adaptive filter based on three - tier neural network was designed, hnpmving PSO algorithm was used to optimize the mutation operator according to standard derivation of swarm fit value to inhibit local optimum. An adaptive noise canceller was designed with an adaptive filter. The simulation shows that this system has better noise cancellation capability compared to the traditional adaptive noise canceller, and increases SNR. greatly.
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第6期730-732,共3页 Journal of Jiamusi University:Natural Science Edition
关键词 粒子群算法 自适应滤波器 噪声抵消 PSO adaptive filter noise canceller
  • 相关文献

参考文献4

  • 1Kenedy J, Eherhart R C. Particle Swarm Optimization[A]. Proceeding of IEEE International Conference on NeuralNetworks[C]. Piscataway,NJ:IEEE Press Service Center, 1995:1942- 1948.
  • 2Eberhart R C, Kenedy J. A New Optimizer Using Particle Swarm Theory[A]. Tne Sixth International Symposium on Micro Machine and Human Science[ C]. Nagoya: IEEE Press, 1995: 39 - 43.
  • 3杨冠鲁,曹瑞,裴勃生,官俊杰,黄小彬.一种神经网络非线性噪声消除方法[J].系统工程与电子技术,2006,28(6):900-902. 被引量:4
  • 4X H Sift, L M Wan, H P Lee, et al.An Improved Genetic Algorithm with Variable Population - size and A PSO - GA Based Hybint Evolutionary Algorithm[A]. Second International Conference on Machine Learning and Cybernetics[C]. Institute of Electrical and Electronics Engineers Ins,2003:1735 - 174.

二级参考文献3

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部