期刊文献+

基于体素值及其梯度值的三维医学体数据分类

Classification for 3D Medical Volume Data based on Voxels Value and their Grads
下载PDF
导出
摘要 结合目前PC图形硬件和医学图像的特点,对基于体素值及其梯度值的体数据分类模型进行了改进,提出了一种改进模型的加速算法.保证不透明度随梯度幅度值的增加而增加的前提下,对梯度幅度值进行放大,以避免过小的梯度幅度值最终产生零值不透明度.结合体数据的窗口变换,用户可以选择不同的梯度幂,观察到不同梯度幅度值的组织边界,为体数据的分类带来了灵活性. With the research on the classification methods and models of volume data, and characteristic of recent PC graphics hardware and medical images, an improved classification model based on voxels value and their grads and the acceleration algorithm is presented. People can choose different grads for different tissues, which improve the flexibility of volume data classification.
出处 《佳木斯大学学报(自然科学版)》 CAS 2008年第6期739-742,共4页 Journal of Jiamusi University:Natural Science Edition
关键词 体数据 分类 volume data classification
  • 相关文献

参考文献6

  • 1刘正光,孙嘉,林雪燕.基于小波域隐马尔可夫模型的人脑MRI体数据分类[J].天津大学学报,2007,40(1):116-120. 被引量:1
  • 2Kamber M, Shinghal R, Collins D L. Model - based 3 - D Segmentation of Multiple Sclerosis Lesions in Magnetic Resonance Brain Images [J]. IEEE Trans on Medical Imaging, 1995,14(3) :442 - 453.
  • 3Li Hua, Elmoataz A, Fadili J. 3D Medical large Segmentation Approach based on Multi- Label front Propagation[C]//IEEE International Conference on Image Processing. Singapore, 2004:2925 - 2928.
  • 4Lum E B, Kwan- Liu Ma, Clyne J.Texture Hardware assisted Rendering of Time - varying Volume data [ C ]//Proceedings of the IEEE Visualization Conference. San Diego, CA, USA, 2001:263 - 270.
  • 5张尤赛,陈福民.DICOM医学图像窗口变换的加速算法[J].计算机工程与应用,2003,39(13):218-220. 被引量:26
  • 6Drebin R, Carpenter L, and Hanrahan P. Volume Rendering. Proc. SIGGKAPH'88, 1988: 65- 74.

二级参考文献15

  • 1National Electrical Manufacturers Association.Digital Imaging and Comunications in Medicine.1998;PS 3.5:9-34.
  • 2Lum E B,Kwan-Liu Ma,Clyne J.Texture hardware assisted rendering of time-varying volume data[C] //Proceedings of the IEEE Visualization Conference.San Diego,CA,USA,2001:263-270.
  • 3Li Hua,Elmoataz A,Fadili J.3D medical image segmentation approach based on multi-label front propagation[C]//IEEE International Conference on Image Processing.Singapore,2004:2925-2928.
  • 4Sing J K,Basu D K,Nasipuri M.Self-adaptive RBF neural network-based segmentation of medical images of the brain[C]//Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing.India,2005:447-452.
  • 5Kamber M,Shinghal R,Collins D L.Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images[J].IEEE Trans on Medical Imaging,1995,14(3):442-453.
  • 6Zhang Y,Brady M,Smith S.Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm[J].IEEE Trans on Medical Imaging,2001,20(1):45-57.
  • 7Wells W M,Grimson E L,Kikinis R,et al.Adaptive segmentation of MRI data[J].IEEE Trans on Medical Imaging,1996,15 (4):429-442.
  • 8Kone Van Leemput,Frederik Maes,Dirk Vandermeulen,et al.Automated model-based bias field correction of MR images of the brain[J].IEEE Trans on Medical Imaging,1999,18 (10):885-896.
  • 9Mallat S G.Multifrequency channel decompositions of images and wavelet models[J].IEEE Trans on Acoustics,Speech,and Signal Processing,1989,37(12):2091-2110.
  • 10Course M S,Baraniuk R G,Nowak R D.Hidden Markov models for wavelet-based signal processing[C]// 1996 Conference Record of the Thirtieth Asilomar Conference on Signals,System and Computers.California,1996:1029-1035.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部