摘要
从Cramer-Rao信息不等式出发,详细地证明了当T(x)是g(θ)的无偏估计且满足T(x)-g(θ)是1 L/Lθ,1L2/Lθ2,L的线性函数时,T(x)的方差可以达到Bhattacharyya下界,并给出实例.从而推广了C-R下界.
We based on the Cramer-Rao inequality and elaborately prove the fact that when T(X) is the unbiased estimator of the function g(θ) and T(X) -g(θ) is the linear function of L^(1)/L, L^(2)/L,…,then the variance of T(X) may dose not satisfy the C-R lower bound, but it is also an optimum estimator of g(θ). Moreover, it reach Bhattacharyya lower bound.
出处
《贵州大学学报(自然科学版)》
2008年第6期562-564,共3页
Journal of Guizhou University:Natural Sciences