期刊文献+

基于可调滤波器金字塔算法的人脸特征提取 被引量:2

Face Feature Extraction Based on Steerable Filters
下载PDF
导出
摘要 特征提取是人脸识别中最重要的一个环节,我们在HMAX模型的基础上,提出了一种改进的视觉信息处理模型,它利用可调滤波器金字塔算法对图像进行多尺度、多方向分析,并结合一系列分层处理,得到了具有尺度、平移、旋转不变性的特征向量,解决了人脸识别中的一个重要难题。在ORL人脸数据库中的实验结果证明了该算法的有效性。 Face feature extraction is the key procedure in face recognition. This paper presents an improved model of visual information processing, which analyses the image in different size and orientation using steerable filters. And a series of hierarchical processing are used. The feature vector can be extracted which is invariant in size, translation and rotation. It solves a difficulty in face recognition. Finally, the experiments on ORL face database verify the effectiveness of the proposed method.
出处 《微处理机》 2008年第5期132-134,共3页 Microprocessors
关键词 可调滤波器金字塔算法 视觉信息处理模型 Steerable filters Model of visual information processing
  • 相关文献

参考文献5

  • 1Brunelli R,Poggio T. Feature recognition:Features versus templates[J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 1993,15 (10) : 1042 - 1052.
  • 2Gross Ralph, Matthews Lain, Baker Simon. Eigen light - fields and face recognition across pose [ J ]. Proceedings of the 5th IEEE International Conference on Automatic Face and Gesture Recognition ( FGR' 02 ), Washington, DC, 2002.
  • 3Maximilian Resenhuber and Tomaso Poggio. Hierarchical models of object recognition in cortex [ J ]. Nature Neuroscience 2,1999 : 1019 - 1025.
  • 4Zhu Hongqing, Shu Huazhong, Luo Limin. Blood vessels segmentation in retina via wavelet transforms using steerable filters[ J]. CBMS 2004 Proceedings 17th IEEE Symposium,2004. ( 6 ) : 316 - 321.
  • 5Jiang Q. Kadambe S. Target enhancement using steerable pyramid decomposition and multi - channel filtering [ J ]. Singals, Systems and computers ,2001 ( 1 ) :563 - 567.

同被引文献17

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部