期刊文献+

几乎满的ε-等距算子的等距逼近问题(英文)

The Isometric Approximation Problem of Almost Surjectiveε-Isometric Operator
下载PDF
导出
摘要 我们从减弱文Vestfrid[1]中定理3中空间一致凸条件和加强ε-等距算子条件着手去研究Banach空间中几乎满的ε-等距算子的等距逼近问题.另外,我们结合完备的β-范(0<β<1)空间的性质得到一些相关结论. In this paper, we investigate the isometric approximation problem of almost surjective E-isometric operator between Banach spaces, weakening uniformly convex condition of the space in Vestfrid[1, Theorem 3] and strengthening the condition of the E-isometric operator. In addition, we discuss the problem on complete β-normed spaces (0 〈β 〈 1).
作者 张毅 王建
出处 《数学研究》 CSCD 2008年第4期361-370,共10页 Journal of Mathematical Study
基金 supported by the National Science Foundation of Fujian Province(Z0511023) the Foundation of Fujian Educational Committee(JA04172)
关键词 ε-等距 几乎满 ε--isometry almost surjective
  • 相关文献

参考文献2

二级参考文献12

  • 1Ulam S M. Problems in ModernMathematics[M]. Science Editions John Wiley & Sons Inc, New York, 1964. MR 43#6031.Zbl137.24201.
  • 2Hyers D H. On the stability of the linear functional equation[J]. Proc Nat Acad SciU S A, 1941,27:222-224.MR 2,315a. Zbl 061.26403.
  • 3Rassias Th M. On the stability of the linear mapping in Banach spaces[J]. Proc AmerMath Soc,1978,72(2):297-300. MR 80d:47094. Zbl 398.47040.
  • 4Rassias Th M. On a modified Hyers-Ulam sequence[J]. J Math AnalAppl,1991,158(1):106-113. MR 92d:46046. Zbl 746.46038.
  • 5Rassias Th M, emrl P. On the Hyers-Ulam stability of linear mappings[J]. J MathAnal Appl,1993,173(2):325-338. MR 94d:39011. Zbl 798.46037.
  • 6Gǎvrutǎ P. A generalization of the Hyers-Ulam-Rassias stability of approximatelyadditive mappings[J]. J Math Anal Appl, 1994,184(3):431-436. MR 95e:47089. Zbl 818.46043.
  • 7Jung S -M. On the Hyers-Ulam-Rassias stability of approximately additivemappings[J]. J Math Anal Appl,1996,204(1): 221-226. MR 97m:47105. Zbl 888.46018.
  • 8Rassias Th M, emrl P. On the behavior of mappings that do not satisfy Hyers-Ulamstability[J]. Proc Amer Math Soc, 1992,114(4):989-993. MR 92g:47101. Zbl 761.47032.
  • 9Hyers D H, Isac G, Rassias Th M. Stability of functional equations in severalvariables[J]. Birkhauser Boston Inc., Boston, MA, 1998. MR 99i:39035. Zbl907.39025.
  • 10Holmes R B. Geometric Functional Analysis and Its Applications[M]. New York:Springer-Verlag, 1975.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部