摘要
用K(s,n)表示完全图K_n的一条边被长为s(s≥2)的路P_(s+1)替代后得到的图.对n≥7,且n-2为素数,刻画了色等价类[K(s,n)]中图的结构特征,进一步,证明了任意任意n≥7,且n-2为素数,K(2,n),K(3,n)是色唯一的.
For a complete graph Kn, let K(s, n) denote the Kn-homeomorph obtained from Kn by replacing one edge of Kn by path Ps+1 with length s. This paper shows the structural features of any graph in the chromatic equivalence class [K(s, n)] and proves that K(2, n), K(3, n) are chromatically unique, where n ≥ 7, and n - 2 is a prime number.
出处
《数学研究》
CSCD
2008年第4期443-449,共7页
Journal of Mathematical Study
基金
国家自然科学基金(10561002)
关键词
n-临界图
色等价
色唯一
n-critical graph
chromatical equivalence
chromatically unique graph