摘要
利用排序原理证明了数列{(1+1/n)~n}收敛性,级数∑(n!e^n)/(n^n+p)在p≤3/2时是发散的和几个不等式。
We prove that the sequence {(1+*(1/n)n} is convergent, the series(p <3/2) is divergentand some inequalies by using Sequencing and Scheduling Principle.
出处
《应用数学与计算数学学报》
1997年第1期92-96,共5页
Communication on Applied Mathematics and Computation
关键词
排序原理
收敛
发散
微积分
级数
Sequencing and Scheduling Principle, convergent, divergent.