摘要
为了求解最大独立集问题,通过对求解最大团问题EA/G算法的分析,从初始解选取、种群的构成、遗传策略等方面对EA/G算法进行了改进,提出了自学习进化算法,并在DIMACS基准图上进行了大量的实验.实验结果表明,该算法运算结果比EA/G算法所求结果有很好的改善.
In order to solve the problems concerning the maximum independent set, the EA/G algorithm was improved by analyzing the algorithm for the solutions to the maximum clique problems from the aspects of selecting the initial solution, constructing populations and genetic strategies. A self-learning evolution algorithm was put forward. After abundant experiments were performed on DIMACS benchmark. The experimental results show that the results obtained by the selflearning evolution algorithm are much better than those by the EA/G algorithm.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第6期863-866,共4页
Journal of Hohai University(Natural Sciences)
关键词
遗传算法
EA/G算法
最大独立集
最大团
自学习进化算法
genetic algorithm
EA/G algorithm
maximum independent set
maximum clique
self-learning evolution algorithm