摘要
为研究现代技术管理条件下宏观事故总量发展趋势的规律,选取企业、行业及国家层面的典型宏观事故统计量随时间的变化关系为研究对象,以数学建模的分析模式对比其中规律,并借助马尔萨斯人口学指数规律模型对机理进行描述和解释.结论表明:在一定时间区域内,国家、行业及企业各层面宏观事故总量y的发展随时间x呈指数递减趋势,其回归函数通式可用y=aerx表示,且各回归曲线的判定系数R2值证实指数规律相关关系显著.宏观事故总量的发展趋势可能呈现出分段现象,各段存在明显边界的同时,各自仍保持稳定的指数递减规律变化.利用这一规律,通过确定某一宏观事故总量发展趋势的回归函数的方法,可对未来一段时间内的该宏观事故总量值进行预测.
To study the developing trends of the amount of the macro-accidents occurring under the conditions of modern technological management, selected the correlation between the typical macro-accident statistics from three levels: enterprises, industries, the state respectively and the time as the research object, the regularity of which was analyzed by mathematical modeling, with the help of Malthus demographic exponential model to describe and explain whose mechanism. The results show that during a certain period of time, the amount y of macro-accidents from all the three levels show an exponential decreasing trend with the extension of time x, whose general regression function formula can be described as : y = ae^rx, and the judging coefficient R^2 of each regression curve can prove a significant relationship between exponent regularities. The trend of total macro-accident variables might show a subparagraph phenomenon, with each division having evident boundary between, while keeping a constantly exponential decreasing pattern separately. Once the regression function of the trend of certain macro-accident amount is determined, it' s possible to predict it in the coming period.
出处
《煤炭学报》
EI
CAS
CSCD
北大核心
2008年第12期1447-1451,共5页
Journal of China Coal Society
基金
北京市教育委员会共建项目建设计划资助项目(XK100080432)
关键词
事故统计
马尔萨斯模型
指数规律
曲线回归
事故预测
accident statistic
Malthus model
exponential function
curve regression
accident forecast