期刊文献+

一个阶段时滞结构的生态-流行病模型的害虫综合防治策略

Strategy for Integrated Pest Management on the Eco-epidemiology Model of Delayed Stage Structure
下载PDF
导出
摘要 分析一个阶段结构的捕食者-食饵(天敌-害虫)模型,利用人工周期定量地投放有病的害虫和天敌去治理害虫.通过脉冲微分方程理论,证明了周期投放量p和q满足β2q(exp(mT)-1)/(exp(d4T)-1)(exp((m+d4)T)-1)+β1p/(exp(d3T)-1)>be-d1τ时,害虫幼虫及成虫将灭绝,而病虫和天敌的密度驱于一个稳定的水平,并进一步证明了当周期投放量p和q满足be-d1τ-d2E<β2q(exp(mT)-1)/(exp(d4T)-1)(exp((m+d4)T)-1)+β1p/(exp(d3T)-1)>be-d1τ时,害虫的密度将在经济受害损失允许水平之下并与天敌共存. Abstract: This paper deals with a stage structure predator - prey ( natural enemy - pest) model . It obtains an integrated pest management strategy by periodically releasing the infected pest and the natural predators. By using the theory of impulsive differential equation, we prove that the larva and imago will perish when the periodic releasing amount p and q satisfy β2q(exp(mT)-1/(exp(d4T)-1)exp((m+d4)T)-1)+β1p/exp(d3T)-1〉be^-d1τ.Then we prove that when be^-d1τ-d2E〈β2q(exp(mT)-1/(exp(d4T)-1)exp((m+d4)T)-1)+β1p/exp(d3T)-1〉be^-d1τ, the pest population is below the economic threshold level and it may coexist with the predator population.
出处 《重庆文理学院学报(自然科学版)》 2008年第6期1-5,共5页 Journal of Chongqing University of Arts and Sciences
基金 国家自然科学基金(10771179)
关键词 阶段时滞结构 生态-流行病模型 综合防治 脉冲效应 全局吸引 delayed stage structure Eco- epidemioloy Model integrated pest management impulsive effect global attraction
  • 相关文献

参考文献6

  • 1陆征一,周义仓.生物数学进展.北京:科学出版社,2006.
  • 2[2]W G Aiello,H I Freedman.A time delay model of single-species growth with stage structure[J].Math.Biosci,1990,101:139-152.
  • 3[3]A Hasting.Age-dependent predation is not a simple process.I.Continuous time models[J].Theor.Popul.Biol.,1983,23:47-62.
  • 4[4]A Hasting.Delay in recruitment at different trophic level,effects on stability[J].J.Math.Biol.,1984,21:35-44.
  • 5[5]Song Xinyu,Chen Lansun.Optimal harvesting and stability for a two competitive system with stage structure[J].Math.Biosci.,2001,170:173-186.
  • 6[6]Gao Shujing,Chen Lansun.Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission[J].Discrete and Continuous Dynamical Systems Series B,2007,7:77-86.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部