摘要
研究了由给定的2n个实数λ1>λ2>…>λn与μ1>μ2>…>μn来构造加边对角矩阵An和An*的问题,使得An以λ1,λ2,…,λn为特征值,A*n以μ1,μ2,…,μn为特征值,并且有公共对角元素α2>α3>…>αn-1,αn≠αn*.给出了这个问题有解的充要条件,并给出了相应的数值方法.
The problem on the construction of bordered diagonal matrices An and An^* with common diagonal elements a2〉a3〉…〉a(n-1), a≠an^* in which the given 2n real numbers λ1〉λ2〉…λn and u1〉u2〉…〉un are the eigenvalues of the matrices An and An^*, respectively. The necessary and sufficient conditions of solvability have been derived. Furthermore,numerical method has been given.
出处
《聊城大学学报(自然科学版)》
2008年第3期34-37,共4页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金(10771073)
关键词
加边对角矩阵
逆特征值问题
特征值
bordered diagonal matrices ,inverse eigenvalue problems,eigenvalue