期刊文献+

影响图及遗传算法的私人信息推测

Influence diagrams and genetic algorithm-based rival’s private information inferring
下载PDF
导出
摘要 市场竞争中,准确推测竞争对手的私人信息对于竞争者掌握竞争的主动权具有重要意义。以影响图作为竞争对手的决策模型,以对手的目标是使整体决策的总期望效用最大,而不仅仅是使每一步决策获得最大效用为准则,根据所观测到的竞争对手的决策行为,利用遗传算法推测对手的自然信息、决策信息或效用信息。实验结果表明,所提方法是正确有效的。 It is important for having the initiative in competition to infer the rival's private information accurately in the compe- tition.The rival's decision-making model is described by Influence Diagrams(IDs).Aceording to the criterion that rival is apt to gain the maximum expected utility in whole multi-steps decision rather than gain the maximum expected utility just in each of the decision steps,the rival's private information about cost,bankroll,tactic,and utility can be inferred through the observation on rival's decision behaviors and using the Genetic Algorithm( GA ).The experimental results show that proposed method is both accurate and reasonable.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第35期20-24,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60763007 云南教育厅自然科学基金No.K1050511~~
关键词 影响图 遗传算法 私人信息 Influence Diagrams(IDc ) Genetic Algorithm(GA) private information
  • 相关文献

参考文献12

  • 1Howard R A,Matheson J E.Influence diagram retrospective[J].Decision Analysis,2005,2(3): 144-147.
  • 2Russell S,Norvig P,姜哲,译.人工智能-一种现代方法[M]2版.北京:人民邮电出版社,2004..
  • 3Maresa V,Harstad R M.Private information revelation in commonvalue auctions[J].Journal of Economic Theory,2003,109(2) :264-282.
  • 4Gottardi P.Market power and information revelation in dynamic trading[J].European Economic Association, 2005,3 ( 6 ) : 1279-1317.
  • 5Chung T Y,Kim J K,Kim S H.Building an influence diagram in a knowledge-based decision system[J].Expert System with Applications, 1992,4 : 33-44.
  • 6Kim J K,Park K S.Modeling a class of decision problems using artificial neural networks[J].Expert System with Applications,1997, 12(2) : 195-208.
  • 7Buntine W L.A guide to the literature on learning probabilistic networks from data[J].IEEE Trans on Knowledge and Data Engeering, 1996,8:195-210.
  • 8Ng A Y,Russell S.Algorithms for inverse reinforcement learning[C]// Proc 17th International Conf on Machine Learning,2000.
  • 9Zhang Zhong-yu, Liu Wei-yi, Li Wei-hua.Dynamic multi-agent influence diagrams for modeling multi-stage games[C]//The 1th International Conference on Machine Learning and Cybernetics, Beijiug, 2002: 1184-1188.
  • 10Zhang N L.Probabilistic influence in Influence diagrams[J].Computational intelligence, 1998,14(4) :475-498.

二级参考文献4

  • 1Chen, M.S., Yu, P.S., Wu, K.L. Optimization of parallel execution for multi-join queries. IEEE Transactions on Knowledge and Data Engineering, 1996,8(3):416~428.
  • 2Steinbrunn, M., Moerkotte, G., Kemper, A. Heuristic and randomized optimization for the join ordering problem. VLDB Journal, 1997,6(3):191~208.
  • 3Wilschut, A.N., Flokstra, J., Apers, P.M.G. Parallel evaluation of multi-join queries. In: Michael, J.C., Donovan, A.S., eds. Proceedings of the ACM-SIGMOD'95. San Jose, CA: Academic Press, 1995. 115~126.
  • 4Chen, M.S., Yu, P.S., Wu, K.L. Scheduling and processor allocation for parallel execution of multi-join queries. In: Proceedings of the 8th International Conference on Data Engineering. Arizona: I.C.S. Press, 1992. 58~67.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部