期刊文献+

基于超球结构的渐进直推式支持向量机 被引量:1

Progressive transductive Support Vector Machines based on hypersphere structure
下载PDF
导出
摘要 针对渐进直推式支持向量机(Progressive Transductive Support Vector Machines,PTSVM)算法训练速度慢,学习性能不稳定的问题,提出一种基于超球结构的渐进直推式支持向量机算法。该算法首先利用支持向量域描述(Support Vector Domain Descrip-tion,SVDD)得到包含每个类别的有标签样本点的最小包球,选择这个包球边界附近的无标签样本点进行标注,然后对目前所有有标签的样本点进行SVM训练。实验结果表明该算法不仅能保持甚至提高算法的精度,更重要的是能大大提高训练速度。 Progressive Transductive Support Vector Machines(PTSVM) has some drawbacks such as slower training speed,and unstable leaming performance,a Progressive Transductive Support Vector Machines learning algorithm based on hypersphere structure is proposed.Labeled data of each class are described by using Support Vector Domain Description(SVDD) and the corresponding smallest enclosing hypersphere is obtained.Then,the method selects new unlabeled samples located near the boundary of the hypersphere.Finally,labeled data available is used to train standard SVM.Experiment results show the method can improve greatly the computing speed.Moreover,it can keep,in fact sometimes improve,the classification accuracy in general.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第35期138-141,共4页 Computer Engineering and Applications
基金 国家自然科学基金No.60705004 No.60703118 河南省科技厅科技计划项目(No.082102210091)~~
关键词 半监督学习 支持向量机 直推式学习 超球结构 semi-supervised learning Support Vector Machines (SVM) transductive learning hypersphere structure
  • 相关文献

参考文献9

  • 1Cristianini N,Shawe-Tayor J.An introduction to support vector machines and other kernel-based learning methods[M].Cambridge: Cambridge University Press,2000.
  • 2Vapnik V.Nature of statistical learning theory[M].New York:Springer-Verlag, 2000.
  • 3Joachims T.Transductive inference for text classification using support vector machines[C]//Proc of the 16th International Conference on Machine Learning.San Francisco:Morgan Kaufman,1999:200-209.
  • 4赵英刚,陈奇,何钦铭.一种基于支持向量机的直推式学习算法[J].江南大学学报(自然科学版),2006,5(4):441-444. 被引量:8
  • 5Chen Y,Wang G,Dong S.Learning with progressive transductive support vector machines[J].Pattern Recognition Letters, 2003,24 (12) : 1845-1855.
  • 6沈新宇,许宏丽,官腾飞.基于直推式支持向量机的图像分类算法[J].计算机应用,2007,27(6):1463-1464. 被引量:10
  • 7廖东平,姜斌,魏玺章,黎湘,庄钊文.一种快速的渐进直推式支持向量机分类学习算法[J].系统工程与电子技术,2007,29(1):87-91. 被引量:12
  • 8Tax D,Duin R.Support vector domain description[J].Pattem Recog nition Letters, 1999,20(11/13) : 1191-1199.
  • 9Joachims T.Making large-Scale SVM Learning Practical [DB/OL]. ( 1999 ).[2007-10-21].http://www-ai.cs.uni-dortmund.de/SOFTWARE/ SVM_LIGHT/svm_light.eng.html.

二级参考文献21

  • 1Joachims T.Transductive inference for text classification using support vector machines[C]/ / Proceeding of the 16th international conference on machine learning.San Francisco:Morgan Kaufmann,1999.200-209.
  • 2Wang Y,Sangteng H.Traing TSVM with the proper number of positive samples[J].Pattern Recognition Letters,2005,26:2187-2194.
  • 3Yisong C,Guoping W,Dong Shihai.Learning with progressive transductive support vector machine[J].Pattern Recognition Letters,2003,24(12) 1845-1855.
  • 4Joachims T.Transductive learning vis spectral graph partitioning[C]/ / International Conference on Machine Learning.Washington:[s.n].2003,290-297.
  • 5Zelikovitz S.Transductive LSI for short text classification problems[C]/ / 7th International Florida Artificial Intelligence Research Symposium Conference.Miami:AAAI Press,2004.
  • 6Ailing D.Pre-extracting support vector by adaptive projective algorithm[J].International Conference on Signal Proceedings.2002,(1):21-24.
  • 7Vapnik V.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,2000.
  • 8Vapnik V N.Statistical learning theory[M].New York:John Wiley and Sons,1998.
  • 9Burges C J C.A tutorial on support vector machines for pattern recognition[M].Boston:Kluwer Academic Publishers,1998.
  • 10Gammerman A,Vapnik V N,Vowk V.Learning by transduction[C]∥ Proceedings of the 14th International Conference on Uncertainty in Artificial Intelligence,Wisconsin,1998:148-156.

共引文献21

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部