期刊文献+

周期场时间导数Ornstein-Uhlenbeck噪声Fokker-Planck方程的小参数展开求解 被引量:3

The small parameter expansion solution to Fokker-Planck equation for Brownian motion in a periodic potential with internal time derivative Ornstein-Uhlenbeck noise
原文传递
导出
摘要 通过引入变量,周期场中内部时间导数Ornstein-Uhlenbeck噪声驱动的布朗运动可用高维Fokker-Planck方程来描述.上述系统不能直接应用通常的小参数展开和势谷中心展开近似求解.用一种变通的小参数展开方法近似求解了系统的Fokker-Planck方程,结果适用于小势垒高度、中等关联时间和较大的相空间区域,近似解析解可获得系统的改进. By introducing suitable variables, the Brownian particles' motion in a periodic potential with internal time derivative Ornstein-Uhlenbeck noise can be described by a high-dimensional Fokker-Planck equation. The equation can not be solved by the usual small parameter expansion method and potential valley expansion method. An alternative small parameter expansion method is proposed to deal with the equation, and the result is applicable for small potential barrier height, intermediate correlation time and in a larger phase space domain, the approximation can be improved systematically.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第12期7477-7481,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10647129)资助的课题~~
关键词 Fokker—Planck方程 周期势 时间导数Ornstein-Uhlenbeck噪声 小参数展开 Fokker-Planck equation, periodic potential, time derivative Omstein-Uhlenbeck noise, small parameter expansion
  • 相关文献

参考文献13

  • 1Bao J D, Zhuo Y Z 2003 Phys. Rev. Lett. 91 138104
  • 2Bao J D, Zhuo Y Z 2005 Phys. Rev. E 71 R010102
  • 3Bai Z W, Bao J D, Song Y L 2005 Phys. Rev. E 72 061105
  • 4Bao J D, Hanggi P, Zhuo Y Z 2005 Phys. Rev. E 72 061107
  • 5Bao J D 2004 Phys. Rev. E 69 016124
  • 6Bai Z W 2007 Commun. Theor. Phys. (Beijing) 48 112
  • 7Hu G 1988 Phys. Rev. A 38 3693
  • 8Hu G 1991 Phys. Rev. A 44 2450
  • 9Graham R, Schenzle A 1983 Z. Phys. B 52 61
  • 10Graham R, Tel T 1984 J. Stat. Phys. 35 729

同被引文献33

  • 1Moreira A A, Luis A, Amaral N 2005 Phys. Rev. Lett. 94 218702.
  • 2Bao J D, Hanggi P, Zhuo Y Z 2005 Phys. Rev. E 72 061107.
  • 3Jabbari F S, Hajime T, Wegdam G H, Bonn D 2008 Phys. Rev. E 78 061.405.
  • 4Lubelski A, Sokolov I M, Klafter J 2008 Phys. Rev. Lett. 100 250602.
  • 5Mori H 1965 Prog. Theor. Phys. 33 423.
  • 6Bao J D, Zhuo Y Z, Oliveira F A, Hanggi P 2006 Phys. Rev. E 74 061111.
  • 7Bao J D, Song Y L, Qin J, Zhuo Y Z 2005 Physica E 72 011113.
  • 8BaoJD, Li RW, WuW2004 J. Comput. Phys. 197 241.
  • 9Bao J D 2004 J. Stat. Phys. 114 112.
  • 10BaiZW, BaoJD, SongYL2005 Phys. Rev. E72061105.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部