期刊文献+

PE微孔形成微气泡及其理论研究 被引量:5

Studies of Microbubble Formation and its Theoretics by PE Microporous
下载PDF
导出
摘要 微气泡制造技术的改进与提高是气浮技术广泛应用的关键。研究了PE微孔膜管在剪切流剪切作用下形成微气泡的条件,从气泡形成机理上分析了膜管孔径大小、气体流量、剪切流流速和表面张力对气泡粒径分布的影响。实验采用静态显微摄像技术对气泡粒径分布进行了表征。实验结果表明,利用PE微孔膜管形成的气泡粒径在40~80μm之间,气泡平均粒径在44.3~60.5μm之间。膜管孔径大小、气体流量、剪切流流速、液相流体的表面张力是影响气泡粒径分布的主要因素。 The key of application air floatation technology is that improvement of microbubble formation. The condition of using PE microporous tube to produce microbubbles by cross-flow was studied, and the effect of pore size, air flow rate, cross-flow rate and Liquid properties on the initial bubble size distribution were analysed on the mechanism of bubbles formation. The bubble size distribution in this unit was measured by static micro-video and image analytics system. These results suggest that the microbubbles whose diameter is dominated from 40μm to 80μm, the initial bubble size distribution depend strongly on pore size and facial characteristics of the membrane tube, cross-flow rate and liquid surface tension.
出处 《过滤与分离》 CAS 2008年第4期13-16,共4页 Journal of Filtration & Separation
关键词 气浮 陶瓷微孔膜管 微气泡 气泡粒径分布 air flotation ceramic microporous tube microbubbles bubble size distribution
  • 相关文献

参考文献8

  • 1朱锡海,任欣,陈卫国.气浮分离技术研究现状与方向[J].水处理技术,1991,17(6):355-360. 被引量:25
  • 2Kiuru H J.Development of dissolved air flotation technology from the first generation to the newest one. [J].Water Science Technology,2001,43(18):1-7.
  • 3徐振华,赵红卫,方为茂,钟本和,潘美英,陈刚,罗永钦.金属微孔管制造微气泡的研究[J].环境污染治理技术与设备,2006,7(9):78-82. 被引量:13
  • 4陈福泰,左华,李久义,范正虹,栾兆坤.新型气浮装置ES-DAF中气泡粒径分布的表征[J].环境科学,2004,25(1):111-113. 被引量:9
  • 5Rodrigues R T, Rubio J.new basis for measuring the size distribution of bubbles [J].Minerals Engineering ,2006,16:757- 765.
  • 6Kazakis N A, Mouza A A, Paras S V.Experimental study of bubble formation at metal porous spargers:Effect of liquid properties and sparger characteristics on the initial bubble size distribution [J].Chemical Engineering Science, 2008,137:256- 281.
  • 7Ryan W L,Henningsen E A.Bubble formation at porous hydrophobic surfaces [J].Colloid And Interface Science,1998,197: 101-107.
  • 8Takahiro A,Takahiro Y,Shuichi S.Micro-bubble formation with organic membrane in a multiphase microfluidic system [J]. Sensors and Actuators ,2008,143:58-63.

二级参考文献25

  • 1陈福泰,王东升,栾兆坤.气浮工艺中微气泡的数码显微动态测量[J].中国给水排水,2003,19(z1):120-121. 被引量:6
  • 2朱锡海,孔宪祥,罗传荣,关耀楚,郭金基.旋流—充气气浮系统及其机理的研究[J].工业水处理,1990,10(1):21-23. 被引量:6
  • 3Edzwald J K. Principles and applications of dissolved air flotation[J]. Wat. Sci. Tech., 1995, 31(3-4): 1-23.
  • 4Rees A J, Rodman D J, Zabel T F. Dissolved-air flotation forsolid-liquid separation[J]. Jour. Separ. Proc. Technol. , 1980, (1): 19-22.
  • 5Jokela P, Ihalainen E, Heinanen J, Viitasaari M. Dissolved air flotation treatment of concentrated fish farming wastewaters[ J ]. Wat. Sci. Tech. , 2001, 43(8): 115-121.
  • 6Rykaart E M, et al. Behavior of air injection nozzles in dissolved air flotation[J]. Wat. Sci. Tech., 1995, 31(3-4): 25-35.
  • 7Rijik de S E, Graaf van der J H J M, Blanken den J G. Bubble size in flotation thickening[ J ]. Water Res. , 1994, 28(2): 465 -473.
  • 8Edzwald J K, Walsh J P, Kaminski G S, Dunn H J. Floccula tion and air requirements for dissolved air flotation [ J ]. J.AWWA, 1992, 84(3): 92- 100.
  • 9Jones S F, Evans G M, Galvin K P. Bubble nucleation from gas cavities--a review[J]. Adv. Colloid Interface Sci., 1999, 80: 27-50.
  • 10Takahashi T, Miyahara T, Mochizuki H. Fundamental study of dissolved air pressure flotation[J]. J. Chem. Eng. Japan, 1979, (12): 275-280.

共引文献40

同被引文献62

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部