摘要
By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W2) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity vg in incident waveguide can be achieved. In particular, proper W2 and r' can lead to the lowest vg of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion.
By introducing an adjustment waveguide besides the incident waveguide, zero-dispersion slow light with wide bandwidth can be realized due to anticrossing of the incident waveguide mode and the adjustment waveguide mode. The width of the adjustment waveguide (W2) and the hole radii of the coupling region (r') will change the dispersion of incident waveguide mode. Theoretical investigation reveals that zero dispersion at various low group velocity vg in incident waveguide can be achieved. In particular, proper W2 and r' can lead to the lowest vg of 0.0085c at 1550 nm with wide bandwidth of 202 GHz for zero dispersion.
基金
Supported by the National Natural Science Foundation of China under Grant No 60537010, the National Basic Research Programme of China under Contract Nos 2006CB302804 and 2007CB307004, and Tsinghua National Laboratory for Information Science and Technology.