期刊文献+

产甘油假丝酵母胞浆3-磷酸甘油脱氢酶基因(CgGPD)功能分析 被引量:1

Characterization of glycerol-3-phosphate dehydrogenase gene (CgGPD) from the glycerol producing Candida glycerinogenes
下载PDF
导出
摘要 【目的】从高产甘油生产菌株产甘油假丝酵母(Candida glycerinogenes)基因组中克隆了NAD^+依赖3-磷酸甘油脱氢酶编码基因(CgGPD),但是该基因及其上游调控序列具体的功能还是未知的。本文研究了CgGPD基因及其上游调控序列的功能。【方法】本文以酿酒酵母(Saccharomyces cere- visiae)及其渗透压敏感型突变株为宿主,构建3种不同的酵母表达载体导人酵母细胞,研究了不同酵母转化子在渗透压胁迫条件下CgGPD基因表达对细胞的耐高渗透压胁迫应答及其细胞的甘油合成能力的影响。【结果】实验结果表明无论是以来源于S.cerevisiae的TPI启动子还是来源于CgGPD基因的启动子,过量表达CgGPD基因的转化子均能够显著加速葡萄糖消耗速度和提高甘油合成能力,在gpd1/gpd2突变株中表达CgGPD基因能够消除细胞对外界高渗透压的敏感性,同时转化子胞内甘油大量积累。【结论】CgGPD基因在野生型酵母S.cerevisiae W303-1A表达显著提高细胞的甘油合成能力,在gpd/1gpd2突变株中能够互补GPD1基因的功能,CgGPD基因表达受渗透压诱导调控。 [Objective] Candida glycerinogenes, an excellent glycerol producer, has been used for commercial scale glycerol production. Recently, we cloned and sequenced the gene encoding NAD+-dependent glycerol 3-phosphate dehydrogenase (GPD) from C. glycerinogenes and this gene was named CgGPD, which plays an important role in glycerol production. However, compared with GPD1 and GPD2 from S. cerevisiae, the function of CgGPD was unclear to date. [Methods] In this study, a functional charaterization of CgGPD was undertaken, using S. cerevisiae and its isogenic gpd1/gpd2 mutant as expression host under high osmotic stress. [Results] Expression of CgGPD in wide type S. cerevisiae, using either TPI promoter from S. cerevisiae or upstream regulatory sequence of CgGPD accelerated glucose consumption rate and improved glycerol production signifcantly. In osmosensitive mutant, expresion of CgGPD including regulatory sequence increased cells osmotic tolernace and growth profile of transformants restored similar to wide type strain under the high osmotic stress condition. Furthermore, mutants harbouring CgGPD accumulated the intracellular glycerol content markedly and GPD specific enzyme activity increased abruptly when exposed to high osmolarity medium. [Conclusion] CgGPD from C. glycerinogenes compensate the GPD1 in S. cerevisiae functionally.
出处 《微生物学报》 CAS CSCD 北大核心 2008年第12期1602-1608,共7页 Acta Microbiologica Sinica
基金 国家自然科学基金(30570142 20676053) 长江学者和创新团队发展计划(IRT0532)~~
关键词 产甘油假丝酵母 3-磷酸甘油脱氢酶 甘油合成 渗透压胁迫 Candida glycerinogenes NAD^+-dependent glycerol 3-phosphate dehydrogenase osmotic stress glycerol production
  • 相关文献

参考文献21

  • 1Wang ZX, Zhuge J, Fang H, et al. Glycerol production by microbial fermentation: a review. Biotechnol Adv, 2001, 19(3): 201-223.
  • 2Hohmann S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev, 2002, 66(2): 300-372.
  • 3Cronwright GR, Rohwer JM, Prior BA. Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol, 2002, 68(9): 4448-4456.
  • 4Rep M, Albertyn J, Thevelein JM, et al. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiology, 1999, 145 (3): 715-727.
  • 5Blomberg A, Adler L. Roles of glycerol and glycerol-3-phos phate dehydrogenase (NAD^+) in acquired osmotolerance of Sa ccharomyces cerevisiae. J Bacteriol, 1989, 171(2): 1087-1092.
  • 6Albertyn J, Hohmann S, Thevelein JM, et al. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol, 1994, 14(6): 4135--4144.
  • 7Zhuge J, Fang HY, Wang ZX, et al. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes. Appl Microbiol Biotechnol, 2001, 55(6): 686-692.
  • 8王正祥,诸葛健,曹钰,陈珺,方慧英.产甘油假丝酵母甘油代谢关键酶的研究[J].微生物学报,2000,40(2):180-187. 被引量:17
  • 9陈献忠,方慧英,沈微,饶志明,诸葛斌,王正祥,诸葛健.产甘油假丝酵母甘油合成关键酶编码基因的克隆[J].遗传,2008,30(4):508-514. 被引量:4
  • 10Rose MD, Winston F, Hieter P. Methods in yeast genetics:a laboratory course manual. 24. New York: Cold Spring Harbor Laboratory Press, 2000

二级参考文献23

  • 1Rose MD Winston F,Hieter P.Methods in Yeast Genetics:A Cold Spring Harbor Laboratory Coupe Manual.2ed Cold Spring Harbor,Cold Spring HarborLaboratory,NY9 2000.
  • 2Otto J,Argos P,Rossmann MG Prediction of secondary structural elements in glycerol-3-phosphate dehydrogenase by comparison with other dehydrogenases.Eur J Biochem,1980,109(2):325-330.
  • 3Li Y,Shen W,Wang Z,Liu J,Rao Z,Tang X,Fang H,Zhuge J.Isolation and sequence analysis of the gene URA3 encoding the orotidine-5'-phosphate decarboxylase from Candida glycerinogenes WL2002-5,an industrial glycerol producer.Yeast,2005,22(6):423-430.
  • 4Zhang SP,Zubay G,Goldman E,Low-usage codons in Escherichia coli,yeast,fruit fly and primates.Gene,1991,105(1):61-72.
  • 5Yagi T,Nogami A,Nishi T,Salt tolerance and glycerol accumulation of a respiration-deficient mutant isolated from the petite-negative,salt-tolerant yeast Zygosaccharomyces rouxii.FEMS Microbiology Letters,1992,92(3):289-293.
  • 6Iwald T,Tamai Y,Watanabe Y.Two putative MAP kinase genes,ZrHOGl and ZrHOG2,cloned from the salt-tolerant yeast Zygosaccharomyces rouxii are functionally homologous to the Saccharomyces cerevisiae HOG1 gene.Microbiology,1999,145(1):241-248.
  • 7Thome PE.Heterologous expression of glycerol 3-phosphate dehydrogenase gene[DhGPD1]from the osmotolerant yeast Debaryomyces hansenii in Saccharomyces cerevisiae.Curr,Microbiol,2005,51(2):87-90.
  • 8Iwaki T,Kurono S,Yokose Y,Kubota K,Tamai Y,Watanabe Y,Cloning of glycerol-3-phosphate dehydrogenase genes (ZrGPD1 and ZrGPD2)and glycerol dehydrogenase genes (ZrGCY1 and ZrGCY2)from the salt-tolerant yeast Zygosaccharomyces rouxii.Yeast,2001,18(8):737-744.
  • 9Ganeedo C,Gancedo JM,Sols A.Glycerol metabolism in yeasts.Pathways of utilization and production.Eur J Biochem,1968,5(2):165-172.
  • 10Wang ZX,Zhuge J,Fang H,Prior BA.Glycerol production by microbial fermentation:a review.Biotechnol Adv,2001,19(3):201-223.

共引文献20

同被引文献15

  • 1Zhuge J, Fang H Y, Wang Z X,et al. Glycerol production by a novel osmotolerant yeast Candida glycerinogenes [J]. Appliedmicrobiology and biotechnology, 2001,55 (6) : 686-692.
  • 2Klabunde J, Kunze G, Gellissen G, et al. Integration of heterologous genes in several yeast species using vectors containing a H ansenula polymorpha-derived rDNA-targeting element[J]. FEMS Yeast Research, 2003 (4) : 185-193.
  • 3Maggi RG,Govind NS. Regulated expression of green fluorescent protein in Debaryomyces hansenii [J]. Journal of Industrial Microbiology and Biotechnology, 2004,31 (7) : 301-310.
  • 4Alves A M, Record E. Lomascolo A, et al. Highly efficient production of laccase by the basidiomycete Pyenoporu.s cinnabarinus [J]. Applied and Environmental Microbiology, 2004,70 (11 ) :6379-6384.
  • 5Kuo C Y, Huang C T. A reliable transformation method and heterologous expression of β -glucuronidase in Le ntimda edodes [J]. Journal of Microbiological Methods, 2008,72 (2) : 111 - 115.
  • 6Zhang C,Zhuge B,Zhan X B,et al. Cloning and characterization of a novel NAD+ dependent glyceraldehyde-3-phosphate dehydrogenase gene from Candida glyce rinogenes and use of its promoter[J]. Yeast, 2013 (30) : 157-163.
  • 7Jeffrey D P, Richard N D, Gina M D, et al. Green fluorescent protein and its derivatives as versatile markers for gene expression in living Drosophila melanogaster, plant and mammalian cells[J]. Gene, 1996 ( 173 ) : 83-87.
  • 8Chen X Z, Fang H Y, Rao Z M, et al. An efficient genetic transformation method for glycerol producer Cctndida glycerinogenes [J]. Microbiol Research, 2008,163 ( 5 ) : 531-537.
  • 9陈献忠,饶志明,沈微,方慧英,王正祥,诸葛健.以Zeocin抗性基因为选择标记的Candida glycerinogenes遗传转化[J].激光生物学报,2008,17(2):176-180. 被引量:3
  • 10丁春生,饶志明,诸葛斌,沈微,陈献忠,方慧英,诸葛健.利用荧光蛋白研究产甘油假丝酵母胞浆3-磷酸甘油脱氢酶基因CgGPD启动子[J].微生物学报,2008,48(8):1013-1018. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部