期刊文献+

直径不超过2的2连通无爪图是哈密顿图(英文)

All 2-Connected Claw-Free Graphs with Diameter at Most Two are Hamiltonian
下载PDF
导出
摘要 不包含2K_2的图是指不包含一对独立边作为导出子图的图.Kriesell证明了所有4连通的无爪图的线图是哈密顿连通的.本文证明了如果图G不包含2K_2并且不同构与K_2,P_3和双星图,那么线图L(G)是哈密顿图,进一步应用由Ryjá(?)ek引入的闭包的概念,给出了直径不超过2的2连通无爪图是哈密顿图这个定理的新的证明方法. A graph is called 2K2-free if it does not contain an independent pair of edges as an induced subgraph. Kriesell proved that all 4-connected line graphs of claw-free graph are Hamiltonian-connected. Motivated from this, in this note, we show that if G is 2K2-free and is not isomorphic to K2, P3 or a double star, then the line graph L(G) is Hamiltonian. Moreover, by applying the closure concept of claw-free graphs introduced by Ryjacek , we provide another proof for a theorem, obtained by Gould and independently by Ainouche et al., which says that every 2-connected claw-free graph of diameter at most 2 is Hamiltonian.
出处 《运筹学学报》 CSCD 北大核心 2008年第4期19-24,共6页 Operations Research Transactions
基金 supported by NSFC (No.10601044),XJEDU2006S05 Scientific Research Foundation for Young Scholar of Xinjiang University.
关键词 运筹学 线图 无爪图 闭迹 哈密顿圈 Operations research, line graphs, claw-free graphs, closed trail, Hamilton cycle
  • 相关文献

参考文献14

  • 1Ainouche A., Broersma H.J. and Veldman H.J. Remarks on Hamiltonian properties of clawfree graphs[J]. Ars Combin., 1990, 29C: 110-121.
  • 2Bondy J.A. and Murty U.S.R. Graph Theory with Applications[M]. Macmillan Press, 1976.
  • 3Chung F.R.K., Gyarfas A., Tuza Z. and Trotter W.T. The maximum number of edges in 2K2-free graphs of bounded degree[J]. Discrete Math., 1990, 81: 129-135.
  • 4Gould R.J. Traceability in graphs[R]. Doctoral Thesis, Western Michigan University, 1979.
  • 5Harary F., Nash-Williams C.St.J.A. On eulerian and Hamiltonian graphs and line graphs[J]. Canad. Math. Bull., 1965, 8: 701-709.
  • 6Hemmeinger R.L. and Beineke L.W. Line graphs and line digraphs[M]. Selected topic in graph theory (L.W. Beineke and R.J. Wilson ed.), Academic Press, 1978, 271-306.
  • 7Kriesell M. All 4-connected line graphs of claw-free graphs are Hamiltonian connected[J]. J. Combin. Theory Ser. B, 2001, 82: 306-315.
  • 8Lai H.J. Every 4-connected line graph of a planar graph is hamiltonian[J]. Graphs Combin., 1994, 10: 249-253.
  • 9Matthews M.M. and Sumner D.P. Hamiltonian results in K1,3-free graphs[J]. J. Graph Theory, 1984, 8: 139-146.
  • 10Nash-Williams C.St.J.A. Edge-disjoint spanning trees of finite graphs[J]. J. London Math. Soc., 1961, 36: 445-450.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部