摘要
This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electricM systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange-Maxwell equations, the discrete analogue of Noether theorems for Lagrange Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results.
This paper focuses on studying Noether symmetries and conservation laws of the discrete mechanico-electricM systems with the nonconservative and the dissipative forces. Based on the invariance of discrete Hamilton action of the systems under the infinitesimal transformation with respect to the generalized coordinates, the generalized electrical quantities and time, it presents the discrete analogue of variational principle, the discrete analogue of Lagrange-Maxwell equations, the discrete analogue of Noether theorems for Lagrange Maxwell and Lagrange mechanico-electrical systems. Also, the discrete Noether operator identity and the discrete Noether-type conservation laws are obtained for these systems. An actual example is given to illustrate these results.
基金
Project supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)
the Natural Science Foundation of Henan Province, China (Grant No 0511022200)