期刊文献+

Dispersion relation of excitation mode in strongly interacting fermions matter 被引量:2

Dispersion relation of excitation mode in strongly interacting fermions matter
下载PDF
导出
摘要 This paper analyses the dispersion relation of the excitation mode in non-relativistic interacting fermion matter. The polarization tensor is calculated with the random phase approximation in terms of finite temperature field theory. With the polarization tensor, the influences of temperature, particle number density and interaction strength on the dispersion relation are discussed in detail. It finds that the collective effects are qualitatively more important in the unitary fermions than those in the finite contact interaction matter. This paper analyses the dispersion relation of the excitation mode in non-relativistic interacting fermion matter. The polarization tensor is calculated with the random phase approximation in terms of finite temperature field theory. With the polarization tensor, the influences of temperature, particle number density and interaction strength on the dispersion relation are discussed in detail. It finds that the collective effects are qualitatively more important in the unitary fermions than those in the finite contact interaction matter.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第12期4401-4406,共6页 中国物理B(英文版)
基金 Project supported by the Scientific Starting Research Fund of Central China Normal University National Natural Science Foundation of China (Grant Nos 10675052 and 10875050) MOE of China (Grant No IRT0624)
关键词 dispersion relation unitary fermions polarization tensor dispersion relation, unitary fermions, polarization tensor
  • 相关文献

参考文献18

  • 1Jr. Ogg R A 1946 Phys. Rev. 69 243
  • 2Ginzburg V L 1952 Usp. Fiz. Nauk. 48 25
  • 3Inguscio M I, Ketterle W and Salomon C 2007 Ultracold Fermi Gases (Amsterdam: IOS Press)
  • 4Greiner M, Regal C A and Jin D S 2053 Nature (London) 426 537
  • 5Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Denschlag J H and Grimm R 2003 Science 302 2101
  • 6Zwierlein M W, Stan C A, Schunck C H, Raupach S M F, Gupta S, Hadzibabic Z and Ketterle W 2003 Phys. Rev. Lett. 91 250401
  • 7Bourdel T, Khaykovich L, Cubizolles J, Zhang J, Chevy F, Teichmann M, Tarruell L, Kokkelmans S J J M F and Salomon C 2004 Phys. Rev. Lett. 93 050401
  • 8Altmeyer A, Riedl S, Kohstall C, Wright M J, Geursen R, Bartenstein M, Chin C, Denschlag J H and Grimm R 2007 Phys. Rev. Lett. 98 040401
  • 9Heiselberg H 2001 Phys. Rev. A 63 043606
  • 10Chen J S 2007 Chin. Phys. Lett. 24 1825

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部