期刊文献+

粘弹性流体旋转流实验研究 被引量:2

Experimental study on free-surface swirling flow of viscoelastic fluid
下载PDF
导出
摘要 利用粒子图像测速仪(PIV)对圆筒形容器内有自由表面变形的粘弹性流体旋转流动进行了实验研究.旋转流动由等速旋转的容器底面来驱动.实验工质为CTAC(十六烷基三甲基氯化铵界面活性剂)水溶液.测量了水、40×10-6、60×10-6和200×10-6CTAC水溶液在弗鲁德数为2.59至16.3范围内的旋转流动.PIV用来测量子午面内的二次流场,并从PIV图像中抽取自由面高度.结果表明在相似的弗鲁德数下,相比于水流CTAC水溶液旋转流动自由表面中心处的凹陷深度降低,随着溶液浓度或粘弹性升高,子午面内右上角的惯性涡被压缩且强度变得越来越弱.通过与水流动比较并做力平衡分析,定量估算了CTAC水溶液的第一正应力差或弱粘弹性. By using a particle image velocimetry (PIV), an experimental study was performed on the swirling flow of viscoelastic fluid with deformed free surface in a cylindrical container. The swirling flow was driven by the rotating bottom wall with constant rotation speed. The tested fluid was an aqueous solution of CTAC ( cetyltrimethyl ammonium chloride). Water as well as CTAC solution flows of 40 ×10^-6, 60×10^-6 and 200×10^-6 were tested at Froude numbers ranging from 2.59 to 16. 3. PIV was used to measure the secondary velocity field in the meridional plane and the deformed free-surface level was extracted from the PIV images. Results show that at a similar Froude number, the depth of the dip formed at the center of the free surface is decreased for CTAC solution flow compared with water flow. The inertia-driven vortex at the up-right comer in the meridional plane becomes weaker and weaker with the increase of solution concentration or viscoelasticity. Through analyzing the overall force balance compared with water flow, the first normal stress difference or the weak viscoelasticity was estimated quantitatively for the dilute CTAC solution flows.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2008年第11期1773-1776,共4页 Journal of Harbin Institute of Technology
基金 日本学术振兴会(JSPS)资助项目(P04340) 哈尔滨工业大学海内外引进人才科研启动项目(01308568) 哈尔滨科技创新人才专项基金(2006RFLXS013)
关键词 粘弹性 自由面旋转流 粒子图像测速仪 界面活性剂 viscoelasticity free-surface swirling flow PIV surfactant
  • 相关文献

参考文献10

  • 1USUI H, SAEKI T. Drag reduction and heat transfer reduction by cationic surfactants [ J]. Journal of Chemical Engineering in Japan, 1993, 26:103 -106.
  • 2ZAKIN J L, MYSKA J, CHARA Z. New limiting drag reduction and velocity profile asymptotes for nonpolymeric additives systems [ J ]. AIChE Journal, 1996, 42: 3544 - 3546.
  • 3MYSKA J, ZAKIN J L. Differences in the flow behaviors of polymeric and cationic surfactant drag reducing additives [ J]. Industrial Engineering and Chemistry Research, 1997, 36 : 5483 - 5487.
  • 4LI F C, KAWAGUCHI Y, HISHIDA K. Investigation on the characteristics of turbulence transport for momen- tum and heat in drag-reducing surfactant solution flow [J]. Physics of Fluids, 2004, 16:3281 -3295.
  • 5LI F C, KAWAGUCHI Y, SEGAWA, HISHIDA K. Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by particle image velocimetry [ J ]. Physics of Fluids, 2005, 16 : 075104 - 1--075104 - 13.
  • 6KAWAGUCHI Y, WEI J J, YU B, FENG Z P. Rheological characterization of drag reducing cationic surfactant solution - shear and elongational viscosities of dilute solutions [C]//Proeeedings of the 4^th ASME -JSME Joint Fluids Eng Conf, Hawaii:[s.n. ], 2003: FEDSMXIB -45653.
  • 7GIESEKUS H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility [ J ]. Journal of Non-Newtonian Fluid Mechanics, 1982, 11: 69-109.
  • 8LI F C, KAWAGUCHI Y, HISHIDA K, OSHIMA M. Investigation of turbulence structures in a drag reduced turbulent channel flow with surfactant additive by stereo-scopic particle image velocimetry [ J ]. Experiments in Fluids, 2006, 40 : 218 - 230.
  • 9LI F C, KAWAGUCHI Y, SEGAWA T, SUGA K. Simultaneons measurement of turbulent velocity field and surface wave amplitude in the initial stage of an open-channel flow by PIV [J]. Experiments in Fluids, 21305, 39:945 -953.
  • 10BIRD R B, ARMSTRONG R C, HASSAGER O. Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics [ M ]. 2^nd ed. , New Jersey: John Wiley & Sons,1987.

同被引文献22

  • 1顾培韵,潘勤敏,孙建中,赵福祥.粘弹性流体流变特性的研究[J].浙江大学学报(自然科学版),1994,28(1):88-93. 被引量:10
  • 2方晨,彭晓峰,张舒.直管中粘弹性流体的振荡输运[J].工程热物理学报,2005,26(5):796-798. 被引量:1
  • 3BIRD R B, CURTISS C F, ARMSTRONG R C, et al. Dynamics of Polymers Liquids [ M ]. New York: Wiley, 1987.
  • 4GROISMAN A, STEINBERG V. Elastic turbulence in a polymer solution flow [ J ]. Nature, 2000, 405 : 66 - 72.
  • 5GROISMAN A, STEINBERG V. Elastic turbulence in curvilinear flows of polymer solutions [ J ]. New J Phy, 2004, 6: 29.
  • 6LI Fengchen, OISHI M, KAWAGUCHI Y, et al. Experimental study on symmetry breaking in a swirling free-surface cylinder flow influenced by viscoelasticity [ J ]. Exp Thermal Fluid Sci, 2007, 31 (3) : 237 - 248.
  • 7ADRIAN R J. Particle-image techniques for experimental fluid mechanics [ J ]. Annu Review Fluid Mech, 1991, 23:261 -304.
  • 8LI Fengchen, KAWAGUCHI Y, HISHIDA K, et al. Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive using stereoscopic particle image velocimetry [ J ]. Exp Fluids, 2006, 40:218-230.
  • 9LI Fengchen, KAWAGUCHI Y, SEGAWA T, et al. Reynolds-number dependence of turbulence structures in a drag-reducing surfactant solution channel flow investigated by PIV [J]. Phys Fluids, 2005, 17(7) :1 -13.
  • 10GIESEKUS H. A simple constitutive equation for polymer fluids based on the concept of deformation-depend- ent tensorial mobility [ J ]. J Non-Newtonian Fluid Mech, 1982, 11:69-109.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部