期刊文献+

GaAs光导开关暗态击穿原因分析 被引量:1

Analysis of Breakdown in GaAs Photoconductive Switch
原文传递
导出
摘要 光导开关(PCSS)在暗态耐压测试中耐压值低于理论值。根据GaAs材料特性,分析了暗态下光导开关的击穿机理。指出碰撞电离与电流控制负微分迁移率交应是导致开关击穿的直接原因。使用Silvaco半导体仿真软件对模型进行了模拟计算,结果表明温度显著影响电场、载流子浓度分布,引起碰撞电离等将就加剧,造成器件耐压值偏低。仿真结果与实验值基本相近,室温下耐压水平为33-40kV/cm。光导开关击穿特性与温度密切相关,改善光导开关散热条件可提高开关耐压水平。 Breakdown happens during the test of photoconductive switch(PCSS)without laser trigger.The breakdown phenomenon in GaAs photoconductive switch is analyzed.Impact ionization and current-controlled negative-resistance(CCNR)effect are the direct causes for the breakdown.Model is built and the simulation of current-voltage characteristics of PCSS at different temperatures is performed by the Silvaco suite.It is found that the rising of temperature dynamically changes the distribution of electrical field and carrier concentration,enhances the impact ionization and CCNR effect high enough and decreases the breakdown threshold.Simulated results agree with the experimental results:breakdown voltage is in 33-40kV/cm at room temperature.It is concluded that breakdown of PCSS is closely related to the device tmperature.Higher breakdown voltage can be achieved by better heat sink for PCSS.
出处 《激光与光电子学进展》 CSCD 北大核心 2008年第12期41-45,共5页 Laser & Optoelectronics Progress
基金 中国工程物理研究院科学技术基金(20060434)资助项目
关键词 光导开关 击穿 Silvaco模拟 温度 photoconductive switch breakdown Silvaco simulation temperature
  • 相关文献

参考文献8

二级参考文献23

  • 1梁振宪,冯军,徐传骧,施卫.半导体光电导开关的非线性特性及应用[J].高电压技术,1996,22(2):12-14. 被引量:2
  • 2施卫,梁振宪,冯军,徐传骧.光电导开关的载流子倍增机理[J].高电压技术,1996,22(3):3-5. 被引量:1
  • 3[1]Loubriel G M,Zutavern F J,Baca A G,et al.Photoconductive semiconductor switches.IEEE Trans Plasma Science,1997,25(2):124
  • 4[2]Islam N E,Schamiloglu E,Fleddermann C B.Characterization of semi-insulating GaAs photoconductive semiconductor switch for ultra wide band high power microwave applications.Appl Phys Lett,1998,73(14):1988
  • 5[4]Shi Wei,Zhang Xianbin,Li Qi,et al.High gain lateral semi-insulating GaAs photoconductive switch triggered by 1064nm laser pulses.Chin Phys Lett,2002,19(3):351
  • 6[6]Loubriel G M,Helgeson W D,Mclaughlin D L,et al.Triggering GaAs lock-on switches with laser diode arrays.IEEE Trans Electron Devices,1991,ED-38(4):692
  • 7[11]Bosch B G,H.Engelmann R W.GUNN-effect elec-tronics,Pitman Publishing,1983:256
  • 8[14]Chatterjee A,Polgreen T.A low-voltage triggering SCR for onchip ESD protection at output input pads.IEEE Electron Device Lett,1991,12(1):21
  • 9[15]Ker M D.A gate-coupled PTLSCR/NTLSCR ESD protection circuit for deep-submicron low-voltage CMOS IC's.IEEE Solid-State Circuit,1997,32(1):29
  • 10[16]Famg Z Q,Look D C.Infrared quenching and thermal recovery of thermally stimulated current spectra in GaAs.Appl Phys Lett,1991,59(1):48

共引文献47

同被引文献10

  • 1崔一平,杨正名,韦钰.聚合物光折变的研究进展[J].中国激光,1994,21(5):403-408. 被引量:3
  • 2W. Barford. Electronic and Optical Properties of Conjugated Polymers[M]. Oxford: Clarendon Press, 2005.
  • 3N. S. Sariciftci, N. Serdar. Primary Photoexcitations in Conjugated Polymers: Molecular Exciton Versus Semiconductor Band Model[M]. Singapore and River Edge: World Scientific, 1997.
  • 4K. H. Ong, S. L. Lim, H. S. Tan et al.. A versatile low bandgap polymer for air-stable, high-mobility field-effect transistors and efficient polymer solar cells[J]. Adv. Mater., 2011, 23(11): 1409~1413.
  • 5T. T. Xu, Q. Q. Qiao. Conjugated polymer-inorganic semiconductor hybrid solar cells[J]. Energy & Environ. Sci., 2011, 4(8): 2700~2720.
  • 6G. Li, V. Shrotriya, J. Huang et al.. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat. Mater., 2005, 4(11): 864~868.
  • 7用有机光电材料提供快速响应[J]. 激光与光电子学进展, 2001, 425(1): 53.
  • 8E. Lebedev, T. Dittrich, V. Petrova-Koch et al.. Charge carrier mobility in poly(p-phenylenevinylene) studied by the time-of-flight technique[J]. Appl. Phys. Lett., 1997, 71(18): 120179~120181.
  • 9H. Bssler. Dispersive and non-dispersive transport processes in polymers[J]. Chem. & Mater. Sci., 1989, 80: 35~44.
  • 10张可锋,林杏潮,张莉萍,王仍,焦翠灵,陆液,王妮丽,李向阳.弱p型碲镉汞材料和陷阱模式光导探测器[J].激光与光电子学进展,2011,48(6):13-16. 被引量:1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部