期刊文献+

用自同构循环图计算Ramsey数R(3,q)的下界

Lower bounds for R(3,q) based on automorphism cyclic graphs
下载PDF
导出
摘要 确定经典Ramsey数的下界是组合数学中非常困难的问题,因而人们常用各种方法计算它的界。发现一种新的方法,即自同构循环图的方法,计算得到三个经典Ramsey数的新下界:R(3,30)≥188,R(3,33)≥217,R(3,34)≥225。 It is a very difficult problem to give lower bounds for classical Ramsey numbers in combinatorics, so people use many different methods to compute their bounds. This paper gave a new method based on automorphism cyclic graphs, and got new lower bounds for three Ramsey numbers: R(3,30) ≥188 ,R(3,33) ≥217 ,R(3,34) ≥225.
出处 《计算机应用研究》 CSCD 北大核心 2008年第12期3581-3582,3601,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60563008 10671076) 广东省自然科学基金资助项目(05005928 5300084) 广西自然科学基金资助项目(0640037) 梧州学院科研资助项目(2007B007)
关键词 RAMSEY数 下界 自同构循环图 Ramsey number lower bound automorphism cyclic graph
  • 相关文献

参考文献8

  • 1BONDY J A, MURTY U S R. Graph theory with applications[ M]. [ S. l. ] :The Macmillan Press Ltd, 1976.
  • 2GREENWOOD R E, GLEASON A M. Combinatorial relations and chromatic graphs[J]. Canadian Journal of Mathematics, 1955,7 (1) :1-7.
  • 3RADZISZOWSKI S P. Small Ramsey numbers [ J ]. The Electronic Journal of Combinatorics, 2006,11 : 1-60.
  • 4LUO Hai-peng, SU Wen-long, LI Zhen-chong. The properties of self- complementary graphs and new lower bounds for diagonal Ramsey numbers[J]. Australasian Journal of Combinatorics, 2002(25) : 103-116.
  • 5SU Wen-long, LUO Hai-peng, ZHANG Zheng-you, et al. New lower bounds of fifteen classical Ramsey numbers[ J ]. Australasian Journal of Combinatorics,1999(19) :91-99.
  • 6苏文龙,罗海鹏,李乔.经典Ramsey数R(4,12),R(5,11)和R(5,12)的新下界[J].科学通报,1997,42(22):2460-2460. 被引量:37
  • 7SU Wen-long, LI Qiao, LUO Hai-peng, et al. Lower bounds of Ramsey numbers based on cubic residues [ J ]. Discrete Mathematics, 2002,250( 1 ) : 197-209.
  • 8LUO Hai-peng, SU Wen-long, SHEN Yun-qiu. New lower bounds for two muhicolor classical Ramsey numbers [ J ]. Radovi Matematicki, 2004,13:15-21.

二级参考文献3

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部