期刊文献+

应用ANN/HMM混合模型预测蛋白质二级结构 被引量:1

Hybrid model of ANN/HMM for protein secondary structure prediction
下载PDF
导出
摘要 针对3-状态隐马尔可夫模型(hidden Markov model,HMM)预测蛋白质二级结构准确率不高的问题,提出15-状态HMM,通过改进的算法与BP神经网络相结合进行二级结构预测。研究对象为CB513数据集中筛选出的492条蛋白质序列,将其随机均分7组。应用混合模型进行预测,对准确率进行7-交叉验证,Q3准确率达77.21%,SOV值为72.52%。结果表明,混合模型既能充分考虑相邻氨基酸残基间的相互影响,也能在一定程度上照顾二级结构的远程相关性,因此带来了较好的预测准确率。 Aimed at the lower accuracy of 3-state hidden Markov model for protein secondary structure prediction, proposed 15-state HMM. Using modified algorithm of HMM to predict secondary structure combined with BP neural networks. Selected 492 proteins from the dataset CB513, and divided them into 7 even subsets. Applied the hybrid model to predict secondary structure and evaluated its accuracy by 7-fold cross validation. The hybrid model appeared to be very efficient, with Q3 score of 77.21% and SOV of 72.52%. The results show that the hybrid model not only captures the local information, but also considers the long-distance information. So it gets higher prediction accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2008年第12期3590-3592,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(30770545)
关键词 蛋白质二级结构预测 隐马尔可夫模型 人工神经网络 protein secondary structure prediction(HMM) hidden Markov model artificial neural network(ANN)
  • 相关文献

参考文献9

  • 1MONTGOMERIE S, SUNDARARAJ S, GALLIN W, et al. Improving the accuracy of protein secondary structure prediction using structural alignment[J]. BMG Bioinformatics,2006,7(6) :301-313.
  • 2CROOKS G E, BRENNER S E. Protein secondary structure: entropy, correlations and prediction [ J ]. Bioinforrnatics, 2004,20 ( 10 ) : 1603-1611.
  • 3CUFF J, BARTON G. Application of multiple sequence alignment profiles to improve protein secondary structure prediction [ J ]. Proteins, 2000,40(3) :502-511.
  • 4JONES D T. Protein secondary structure prediction based on positionspecific scoring matric[J]. ,.I MOI Biol, 1999,292(2) :195-202.
  • 5ZEMLA A, VENCLOVAS C, FIDELIS K, et al. A modified definition of SOV, a segment-based measure for protein secondary structure prediction assessment [ J ]. Proteins, 1999,84 ( 2 ) :220 - 223.
  • 6飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社,2006.119-121.
  • 7卢光莹,华子千.生物大分子晶体学基础[M].北京:北京大学出版社,2006:115—119.
  • 8HOEBEKE M, SCHBATH S. R' MES: finding exceptional motifs [ EB/OL]. ( 2006-12-28 ) [ 2007-07-12 ]. http ://genome. jouy. inra. fr/ssb/rmes/rmes3, userGuide, pdf.
  • 9MARTELLI P L, FARISELLI P, KROGH A, et al. A sequence-profile-based HMM for predicting and discriminating β barrel membrane proteins[J]. Bioinformatics, 2002,18( 1 ) :46-53.

共引文献62

同被引文献11

  • 1罗亮,史晓红,许进.LVQ神经网络方法预测蛋白质结构中的二硫键[J].系统仿真学报,2007,19(9):2077-2079. 被引量:5
  • 2史晓红,王燕,张凯,罗亮,许进.基于图的匹配方法预测蛋白质结构中的二硫键[J].计算机工程与应用,2007,43(13):30-32. 被引量:3
  • 3WEDEMEYER W J, WELKER E, NARAYAN M, et al, Disulfide bonds and protein folding[J]. Biochemistry,2000,39(23) :4207-4216.
  • 4FISER A, SIMON I. Predicting the oxidation state of cysteines by multiple sequence alignment [ J ]. Bioinformatics,2000,16 (3) :251 - 256.
  • 5MUCCHIELLI-GIORGI M H, HAZOUT S, TUFFERY P. Predicting the disulfide bonding state of cysteines using protein descriptors[ J]. Proteins ,2002,46 ( 3 ) :243-249.
  • 6MARTELLI P L, FARISELLI P, CASADIO R. Prediction of the di-sulfide-bonded cysteines in proteomes with a hidden nerual network [ J]. Proteomics ,2004,4 (6) : 1665-1671.
  • 7VULLO A, FRASCONI P. Disulfide connectivity prediction using re- cursive neural networks and evolutionary information [J]. Bioinfor- matics,2004,20(5 ) :653-659.
  • 8ZHAO E, LIU H L, TSAI C H, et al. Cysteine separations profiles on protein sequences infer disulfide connectivity [ J ]. Bioinforma- ties ,2005,21 ( 8 ) : 1415-1420.
  • 9TSAI C H, CHEN B J, CHAN C H, et al. Improving disulfide con- nectivity prediction with sequential distance between oxidized cysteines[J]. Bioinformatics,2005,21(24) :4416-4419.
  • 10JONES D. Protein secondary structure prediction based on position- specific scoring matrices[J]. Journal of Molecular Biology, 1999, 292(2) :195-202.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部