期刊文献+

面向应用的快速多峰寻优算法 被引量:1

Application-oriented fast optimizer for multi-peak searching
下载PDF
导出
摘要 工程应用中的多峰寻优问题要求搜索目标函数的多个极值点,现有的多峰优化方法难以直接利用应用问题的先验知识引导算法过程,多峰寻优效率较低。基于粒子群优化算法设计一种面向应用的多峰寻优算法,能有效利用易于获得的先验参数,如峰间分辨率、峰位置精度、峰值个数等实现快速多峰搜索。该算法保持了粒子群算法的简单性并改善了搜索多样性,使其可控地收敛到多个峰值上。将该算法与几种典型的多峰寻优方法进行了对比测试和分析,结果表明,对复杂多峰函数,该算法能以最快的收敛速度实现多峰搜索。 Multi-peak optimizations in engineering applications are needed to search muhiple extrema of objective functions. Previous multi-peak searching methods usually cannot make use of prior parameters to guide the algorithm directly. This paper proposed an application-oriented multi-peak optimizer based on the particle swarm optimization (PSO). It took advantage of prior parameters such as peak resolution, solution accuracy, and peak number demanded, which could usually be ascertained in real-world problems. The algorithm kept the simplicity of basic PSO and expanded its searching diversity. This paper compared the new algorithm with some typical muhimodal optimization algorithms on the basis of which the tests and analyses of them were conducted. Results show that the new algorithm can successfully locate the multiple extrema that outhors need at highest speed.
出处 《计算机应用研究》 CSCD 北大核心 2008年第12期3617-3620,共4页 Application Research of Computers
关键词 面向应用 多峰寻优 粒子群优化算法 application-oriented multi-peak searching PSO
  • 相关文献

参考文献9

  • 1BRITS R, ENGELBRECHT A P, Van DEN BERGH F. Locating multiple optima using particle swarm optimization [ J ]. Applied Mathematics and Computation, 2007,189 : 1859-1883.
  • 2BRITS R, ENGELBRECHT A P, Van DEN BERGH F. A niching particle swarm optimizer [ C ]//Proc of the 4th Asia Pacific Conference on Simulated Evolution and Learning. 2002:692-696.
  • 3BEASLEY D, BULL D, MARTIN R. A sequential niche technique for multimodal functiori optimization [ J ]. Evolutionary Computation, 1993,1 (2) :101-125.
  • 4KENNEDY J, EBERHART R C. Particle swarm optimization[ C]// Pmc of IEEE International Conference on Neural Networks. Perth: [ s. n. ] , 1995 : 1942-1948.
  • 5CLERC M. The swarm and the queen: towards a deterministic and adaptive particle Swarm optimization [ C ]//Proc of Congress on Evolutionary Computation. Piscataway : IEEE Service Center, 1999 : 1951- 1957.
  • 6CARLISLE A, DOZIER G. An off-the-shelf PSO[ C]//Proc of Workshop on Particle Swarm Optimization. Indianapolis: [ s. n. ] , 2001:1-6.
  • 7Van DEN BERGH F. An analysis of particle swarm optimizers[ D]. South Africa : Department of Computer Science, University of Pretoria, 2002.
  • 8LAGARIAS J C, REEDS J A, WRIGHT M H, et al. Con~,ergence properties of the nelder-mead simplex method in low dimensions[ J ]. SIAM Journal of Optimization, 1998,9( 1 ) :112-147.
  • 9OZCAN E, YILMAZ M. Particle swarms for multimodal optimization [C]//BELICZYNSKI B, et al., Lecture Notes in Computer Science. [ S. 1. ] : Springer-Verlag,2007:366-375.

同被引文献13

  • 1陈娟,徐立鸿.动态小生境遗传算法在多模函数优化中的应用[J].同济大学学报(自然科学版),2006,34(5):684-688. 被引量:7
  • 2KENNEDY J, EBERHART R. Particle swarm optimization [C]// Proceedings of the 1995 IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE, 1995, 4: 1942-1948.
  • 3HORN J. The nature of niching: genetic algorithm and the evolution of optimal, cooperative population [D]. Urbana-Champaign: University of Illinois at Urbana-Champaign, 1997: 17-21.
  • 4WEI L, ZHAO M. A niche hybrid genetic algorithm for global optimization of continuous multimodal functions [J]. Applied Mathematics and Computation, 2005, 160(3): 649-661.
  • 5LI J P, BALAZS M E, PARKS G T, et al. A species conserving genetic algorithm for multimodal function optimization [J]. Evolutionary Computation, 2002, 10(3): 207-234.
  • 6LI X. Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization [M]// DEB K. Genetic and Evolutionary Computation—GECCO 2004, LNCS 3102. Berlin: Springer, 2004:105-116.
  • 7PASSARO A, STARITA A. Particle swarm optimization for multimodal function: a clustering approach [J]. Journal of Artificial Evolution and Application, 2008, 2008(2):Article No. 8.
  • 8SEO J H, IM C H, HEO C G, et al. Multimodal function optimization based on particle swarm optimization [J]. IEEE Transactions on Magnetics, 2006, 42(4): 1095-1098.
  • 9CLERC M, KENNEDY J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58-73.
  • 10GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodal function optimization [C]// Proceedings of the 2nd International Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum Associates, 1987: 41-49.

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部