期刊文献+

改进的遗传算法在生物组织热特性参数无损测量中的应用 被引量:1

Application of improved genetic algorithm to the noninvasive measurement of thermal parameters for living tissues
原文传递
导出
摘要 针对生物活体组织的多个热特性参数同时测量的难点问题,提出了采用遗传算法同时估计多个活体组织热特性参数的方法,设计了实数编码的遗传算法.通过对选择、交叉和突变算子进行改进,并引入小生境策略,提高了遗传算法的全局寻优能力和搜索效率.对动态体模和人体前臂的热特性参数测量的模拟仿真研究和实验研究表明,采用改进的遗传算法,能够以较高的精度同时估计生物活体组织的多个热特性参数. The simultaneous measurement of multiple thermal parameters of living tissues is of great significance for medical clinical applications. A parameter estimation method using improved genetic algorithm (GA) was proposed to simultaneously estimate the multiple thermal parameters of living tissues. In the method the real-coded GA was designed, the selection, crossover and mutation operators were improved, and the niche mechanism was applied to improve the capability of global optimization. The simulation and experimental researches of a dynamic phantom and a human forearm indicate that it is feasible and effective to simultaneously estimate the multiple thermal parameters of living tissues with high accuracy by the proposed method.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2008年第11期1317-1321,共5页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(No.50546029)
关键词 生物传热 血液灌注率 遗传算法 参数估计 导热系数 bioheat transfer blood perfusion genetic algorithm parameter estimation thermal conductivity
  • 相关文献

参考文献14

  • 1Diller K R, Ryan T P. Heat transfer in living system: current opportunities. Trans ASME, 1998, 120:810
  • 2Kress R, Roemer R. A comparative analysis of thermal blood perfusion measurement techniques. ASME J Biomech Eng, 1987, 109:218
  • 3Valvano J W, Allen J T, Bowman H F. The simultaneous measurement of thermal conductivity, thermal diffusivity and perfusion in small volumes of tissue. ASME J Biomech Eng, 1984, 106:192
  • 4Arkin H, Holmes K R, Chen M M. A sensitivity analysis of the thermal pulse decay method for measurement of local tissue conductivity and blood perfusion. ASME J Biornech Eng, 1986,108: 54
  • 5O'Reilly T B, Gonzales T L, Diller T E. Development of a noninvasive blood perfusion probe. Adv Heat Mass Transfer Biotechnol, 1996, 34:67
  • 6Goldberg D E, Richardson J. Genetic algorithms with sharing for multi-model function optimization// Proceedings of the Second International Conference on Genetic Algorithms. San Mateo, 1987:41
  • 7乐恺,于帆,张欣欣.三点法无损测量生物活体组织热参数的分析[J].北京科技大学学报,2004,26(3):330-332. 被引量:2
  • 8Pennes H H. Analysis of tissue and arterial temperatures in the resting human forearm. J Appl Physiol, 1948, 1 : 93
  • 9Baker J E. Reducing bias and inefficiency in the selection algorithm// Proceedings of ICGA 2. San Mateo, 1987 : 14
  • 10周育人,李元香,王勇.一种有效的实数编码遗传算法[J].武汉大学学报(理学版),2003,49(1):39-43. 被引量:18

二级参考文献15

  • 1[2]Diller K R,Valvano J W,Pearce J A.Bioheat Transfer [M].London: Springer,2000.114
  • 2[3]Reilly T B,Gonzales T L,Diller T E.Development of a noninvasive blood perfusion probe [J].Adv Heat Mass Transfer Biotechnol,ASME,1998,34..67
  • 3[4]Beck J V,Arnold K J.Parameters Estimation in Engineering and Science [M].New York: Jonh Wiley,1997
  • 4[5]Pennes H H.Analysis of tissue and arterial temperatures in the resting human forearm [J].J Appl Physiol,1948(1): 93
  • 5[6]Wemer J,Buse M.Temperature profiles with respect to inhomogeneity and geometry of the human body [J].J Appl Physiol,1988,65(3): 1110
  • 6Back T, Hammel U, Schwefel H P. Evolutionary Computation: Comments on the History and Current State [J]. IEEE Transactions on Evolutionary Computation, 1997,1(1):3-17.
  • 7Storn R, Price K. Differential Evolution-a Fast and Efficient Heuristic for Global Optimization Over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11:341-359.
  • 8Herrera F, Lozano M, Verdegay J L. Tackling Real-Coded Genetic Algorithms: Operators and Tools for Behavioural Analysis [J]. Artificial Intelligence Review,1998,12(4):265-319.
  • 9Deb K, Beyer H G. Self-Adaptive Genetic Algorithms with Simulated Binary Crossover [J]. Evolutionary Computation, 2001,9(2):197-221.
  • 10Ono I, Kita H, Kobayashi S. A Robust Real-Coded Genetic Algorithm Using Unimodal Normal Distribution Crossover Augmented by Uniform Crossover: Effects of Self Adaptation of Crossover Probabilities [A]. In: Banzhaf W, Daida J, Eiben E, eds. GECCO-99: Proceedings of the Genetic and Evolutionary Computation Conference[C]. San Mateo, CA: Morgan Kaufmann Press, 1999. 496-503.

共引文献18

同被引文献19

  • 1王秀春,智会强,毛一之,杨增军,韩鹏.用遗传算法求解多维导热反问题[J].核动力工程,2005,26(1):23-27. 被引量:8
  • 2薛齐文,杨海天.共轭梯度法求解非线性多宗量稳态传热反问题[J].计算力学学报,2005,22(1):51-54. 被引量:8
  • 3李守巨,刘迎曦.改进遗传算法在非线性热传导参数识别中的应用[J].工程力学,2005,22(3):72-75. 被引量:7
  • 4吴洪潭.二维对流换热反问题的共轭梯度法求解[J].宇航计测技术,2005,25(4):25-27. 被引量:6
  • 5俞昌铭.计算热物性参数的导热反问题[J].工程热物理学报,1982,13(4):373-378.
  • 6Lee H S. A new spatial regularization scheme for the identification of the geometric shape of an inclusion in a finite body [ J]. International Journal for Numerical Methods in Engineering, 1999, 46 (6) : 973 -992.
  • 7Huang C H, Ozisik M N, Sawaf B. Conjugate gradient method for determining unknown contact conductance during metal casting [ J]. International Journal of Heat and Mass Transfer, 1991, 34(7) : 1779 - 1785.
  • 8Alifanov O M, Mikhailov V V. Solution of the nonlinear inverse conductivity problem by the iteration method [J]. Journal of Engineering Physics, 1978, 35(6) : 1501 -1506.
  • 9Tervola P. A method to determine the thermal conductivity from measured temperature profiles [ J]. International Journal of Heat and Mass Transfer, 1989, 32(8) : 1425 -1430.
  • 10Liu F B. A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source [ J ]. International Journal of Heat and Mass Transfer, 2008, 51( 15 - 16) : 3745 - 3752.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部