期刊文献+

分位数回归与上证综指VaR研究 被引量:7

Quantile Regression and the Research of VaR in Shanghai Stock Market
下载PDF
导出
摘要 把极端分位数所具有的行为特征应用到VaR的研究中,建立上海股市收益率的条件分位数回归模型,描述其在极端分位数下的变化趋势。同时选取适当的尾部模型,并在此基础之上应用外推法预测非常极端分位数下的条件VaR,并与直接由分位数回归模型预测的结果进行比较。结果表明:两种方法得到的结果变化趋势都是一致的,由外推法预测的结果相对小一些。 By studying the estimation method and asymptotic behaviors of extremal quantiles, we apply its behaviors to the research of VaR. The conditional quantile regression model of return rates of Shanghai stock market is established, which describes the trend of rates under extrernal quantiles. Conditional VaR in very extreme quantiles is predicated by using extrapolation methods under the proper tail model. Comparison with the prediction of the ordinary quantile regression model is also given. The results show that the tendencies of the two predictions are similar and the value estimated by the extrapolation methods is relatively small.
作者 关静 史道济
机构地区 天津大学理学院
出处 《统计与信息论坛》 CSSCI 2008年第12期15-19,共5页 Journal of Statistics and Information
关键词 分位数回归 极端分位数 VAR quantile regression extreme quantiles VaR
  • 相关文献

参考文献11

  • 1Lily W, Pranab K S. Extreme value theory in some statistical analysis of genomic sequences[J]. Extremes, 2005, 8(4): 295 - 310.
  • 2Tae- Hwy L, Burak S. Assessing the risk forecasts for Japaneses stock market[J]. Japan and the World Economy, 2002, 14 (1):63-85.
  • 3李秀敏,史道济.VaR的若干度量方法及其比较[J].西北农林科技大学学报(社会科学版),2006,6(6):38-41. 被引量:4
  • 4Koenker R, Bassett G. Regression quantiles[J]. Econometrical, 1978,46(1):33 - 50.
  • 5Bouye E, Salmon M. Dynamic copula quantile regressions and tail area dynamic dependence in forex markets[J]. Manuscript, Financial Econometrics Research Center,2002.
  • 6Somers M, Whittaker J. Quantile regression for modelling distributions of profit and loss[J]. European Journal of Operational Research, 2006(183) :1477-1487.
  • 7Koenker R, Bassett G. The asymptotic distribution of the least absolute error estimator[J]. Journal of the American Statistical Association, 1978(73) :618 - 622.
  • 8Chemozhukov V. Extremal quantile regression[J]. Ann. Statist, 2005, 33(2) :806 - 839.
  • 9Chernozhukov V. Inference for extremeal conditional quantile models, with an application to birthweights[R]. MIT, department of Economics, Working Paper,2005.
  • 10Pickands J. Statistical inference using extreme order statistics[J]. Ann Statist, 1975(3) :119- 131.

二级参考文献9

共引文献3

同被引文献87

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部