期刊文献+

稳健的磁源参数计算方法及模型计算结果 被引量:1

Calculating method and model calculation results of sound magnetic source parameters
下载PDF
导出
摘要 重磁异常的自动解析方法领域出现了大量的研究成果,形成了欧拉反褶积、场源参数成像等方法。场源参数成像方法能够自动计算出场源体埋深、倾向和形态,与欧拉反褶积相比较,场源参数成像因计算方法简单而备受重视。但是计算的不稳定性和对噪声的敏感性一直限制了方法的应用。采用基于小波分析方法进行求导,并在计算局部波数中采用解析展开的方法,避免直接除水平导数而出现奇点问题,采用解析信号的振幅作为分母,使计算稳定性大为提高。模型计算结果表明方法对单个异常体的计算具有很好的效果。 There are a lot of study results occurred in the field of automatically analytical methods of gravity and magnetic anomalies, and then Eulerian deconvolution, source parameter imaging method and so on are gradually produced. The latter method can automatically calculate the buried depth, dip and configuration of the source body. Comparing with the former, this method is more emphasized due to its simple calculation, but the calculation instability and the sensibility to all kinds of noises restrict the application of the method all the time. By means of wavelet analyzing method, the derivative has been resolved and at the same time analytical spreading method is adopted in the course of calculating partial wave number, so the strange point problem can be avoided when directly divided by horizontal derivative. By taking the amplitude of analytic signal as denominator, the calculation stability has been improved greatly. The results of model calculation show that the method has much better calculation effects to individual anomaly body.
出处 《大庆石油地质与开发》 CAS CSCD 北大核心 2008年第6期136-139,共4页 Petroleum Geology & Oilfield Development in Daqing
关键词 重磁异常 场源参数成像 小波分析 导数处理 gravity and magnetic anomalies source parameter imaging wavelet analysis derivative process
  • 相关文献

参考文献14

  • 1Naudy H. Automatic determination of depth on aemmagnetic profile [J] . Geophysics, 1971, 36: 712-722.
  • 2Jain S. An automatic method of direct interpretation of magnetic profile [J] . Geophysics, 1976, 41: 531-541.
  • 3Nabighian M N, Hansen R O. Unification of Euler and Werner deconvolution in three dimensions via the generalized Hilbert transform [ J] . Geophysics, 2001,66 : 1805-1810.
  • 4Reid A B, Allsop J M, Granser H, et al. Magnetic interpretation in three dimensions using Euler deconvolution [ J ] . Geophysics, 1990, 55 : 80-91.
  • 5Stavrev P Y. Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies [ J ] . Geophysical Prospecting, 1997, 45: 207-246.
  • 6Zhang C, Mushayandebvu M F, Reid A B, et al. Euler deconvolution of gravity tensor gradient data [ J ] . Geophysics, 2000, 65 : 512-520.
  • 7Nabighian M N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section : Its properties and use for automated anomaly interpretation [ J] . Geophysics, 1972, 37: 507-517.
  • 8Nabighian M N. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal crosssection [ J] . Geophysics, 1974, 39: 85-92.
  • 9Nabighian M N. Toward the threedimensional automatic interpretaion of potential field data via generalized Hilbert transforms: Fundamental relations [ J] . Geophysics, 1984, 53 : 957-966.
  • 10Thurston J B, Smith R S. Automatic conversion of magnetic data to depth, dip, and susceptibility contrast using the SPITM method [ J] . Geophysics, 1997, 62: 807-813.

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部