摘要
利用小波微分求积法(WDQM)对任意荷载作用下的薄板弯曲问题进行了求解分析。数值算例表明,小波微分求积法与一般的DQ法相比具有很好的适用性,特别是薄板受集中荷载或不连续分布荷载作用时,由于小波基函数的紧支撑特性与其对突变信号良好的描述能力,WDQ法的精度明显优于一般的DQ法,具有良好的应用前景。
A wavelet-based differential quadrature method (WDQM) is developed to deal with bending problems of Kichhoff plates under arbitrary load in this paper. The numerical examples show that WDQM is more versatile than the conventional differential quadrature method (DQM). Because of the wavelet property of locatization and the good features in treating with singularities, the WDQM is found to be much more efficient and accurate than DQM when the plate is under concentrated load or discontin- uously distributed load. The present WDQM is an effective alternative to the conventional DQM.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2008年第6期863-867,共5页
Chinese Journal of Computational Mechanics
基金
国家自然科学基金(10432030)资助项目
关键词
薄板弯曲
小波
微分求积法
bending analysis
plate
wavelet
differential quadrature method