期刊文献+

基于小波微分求积法的薄板弯曲分析 被引量:6

Bending analysis of Kirchhoff plates by wavelet-based differential quadrature method
下载PDF
导出
摘要 利用小波微分求积法(WDQM)对任意荷载作用下的薄板弯曲问题进行了求解分析。数值算例表明,小波微分求积法与一般的DQ法相比具有很好的适用性,特别是薄板受集中荷载或不连续分布荷载作用时,由于小波基函数的紧支撑特性与其对突变信号良好的描述能力,WDQ法的精度明显优于一般的DQ法,具有良好的应用前景。 A wavelet-based differential quadrature method (WDQM) is developed to deal with bending problems of Kichhoff plates under arbitrary load in this paper. The numerical examples show that WDQM is more versatile than the conventional differential quadrature method (DQM). Because of the wavelet property of locatization and the good features in treating with singularities, the WDQM is found to be much more efficient and accurate than DQM when the plate is under concentrated load or discontin- uously distributed load. The present WDQM is an effective alternative to the conventional DQM.
作者 张纯 仲政
出处 《计算力学学报》 EI CAS CSCD 北大核心 2008年第6期863-867,共5页 Chinese Journal of Computational Mechanics
基金 国家自然科学基金(10432030)资助项目
关键词 薄板弯曲 小波 微分求积法 bending analysis plate wavelet differential quadrature method
  • 相关文献

参考文献8

  • 1BELLMAN R E, CASTI J. Differential quadrature and long term integration[J]. Journal of Mathematical Analysis and Applications, 1971,34: 235-238.
  • 2MALIK M, BERT C W. Implementing multiple boundary eondtions in the DQ solution of high-order PDEs: application to free vibration of plates[J]. International Journal for Numerical Methods in Engineering, 1996,39(7) : 1237-1258.
  • 3聂国隽,仲政.用微分求积法求解梁的弹塑性问题[J].工程力学,2005,22(1):59-62. 被引量:26
  • 4LI J J, CHENG C J. Differential quadrature method for nonlinear vibration of orthotropie plates with finite deformation and transverse shear effect [J]. Journal of Sound and Vibration, 2005, 281: 295- 309.
  • 5ZHONG H Z. Spline-based differential quadrature for fourth order differential equations and its application to Kirchhoff plates[J]. Applied Mathematical Modelling, 2004,28 : 353-366.
  • 6王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 7VASILYEV O V, PAOLUCCI S, SEN M. A multi- level wavelet collocation method for solving partial differential equations in a finite domain[J]. Journal of Computational Physics, 1995,120 : 33-47.
  • 8吴家龙.弹性力学[M].上海:同济大学出版社,1996..

二级参考文献8

  • 1王鑫伟.微分求积法在结构力学中的应用[J].力学进展,1995,25(2):232-240. 被引量:90
  • 2Owen DRJ, Hinton E. Finite Element in Plasticity: Theory and Practice [M]. U.K.: Pineridge Press Limited Swansea, 1980.
  • 3Bert CW, Malik M. The differential quadrature method in computational mechanics: A review [J]. Appl Mech Rev, 1996, 49(1): 1-28.
  • 4Moradi S, Taheri F. Delamination bucking analysis of general laminated composite beams by differential quadrature method [J]. Composites: Part B, 1999, 30: 503-511.
  • 5Du H, Lim MK, Lin RM. Application of generalized differential quadrature method to structural problems [J]. Int J numer methods eng, 1994, 37: 1881-1896.
  • 6Wang X., Bert CW, Striz AG. Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates [J]. Computers & Structures, 1993, 48(3): 473-479.
  • 7Moradi S, Taheri F. Post buckling analysis of delaminated composite beams by differential quadrature method [J]. Composite Structures, 1999, 46: 33-39.
  • 8Karami G, Malekzadeh P. A new differential quadrature methodology for beam analysis and the associated differential quadrature element method [J]. Comput. Methods Appl. Mech. Engrg., 2002, 191: 3509-3526.

共引文献121

同被引文献54

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部