期刊文献+

纳米微结构涂层的制备及其超疏水性研究 被引量:7

Synthesis and superhydrophobic characteristics of coating with nanostructure
下载PDF
导出
摘要 通过简便的纳米粒子填充法制备超疏水表面,将SiO2纳米粒子与含氟丙烯酸酯聚合物按不同比例混溶制备出具有不同微结构的表面,并探讨了表面微结构对润湿性能的影响。接触角测试表明,随着SiO2纳米粒子含量的增加,涂层与水接触角逐渐增大,并且当SiO2与聚合物质量比>1.2时发生突跃,显示出超疏水性质。采用X射线光电子能谱分析了涂层表面化学环境,通过扫描电子显微镜、原子力显微镜、孔结构分析等方法观察和分析了不同SiO2纳米粒子含量时涂层表面微结构。研究结果表明,涂层表面润湿特性的变化主要归因于其表面微结构的不同。并通过粗糙表面润湿理论的Wenzel模型和Cassie模型解释了表面微结构对润湿性的影响及接触角的突跃现象。 A simple method was developed for forming superhydrophobic coatings with nanoparticles. Various microstructure surfaces coated with silica nanoparticles and perfluoroalkyl methacrylic copolymer were conducted to explore the influence of surface microstructure on the performance of water-repellence. The water contact angle increased content of silica nanoparticles, and suddenly changed to more than 150 degree while the mass ratio of silica nanoparticles to polymer was about 1.2. The surface chemical composition was characterized by XPS, The morphology and microstructure of surfaces was observed by FESEM and AFM. Surface characteristics determined from nitrogen physisorption showed that the surface area and pore volume increased significantly with the extent of nanoparticle ratio, indicating a change of surface microstructure. The result showed the changes of the wettability were due to the surface microstrueture. The influence of surface microstructure on wettability and sudden change were expounded with the Wenzel model and Cassie model.
出处 《功能材料》 EI CAS CSCD 北大核心 2008年第12期2053-2056,共4页 Journal of Functional Materials
基金 国家高技术研究发展计划(863计划)资助项目(2007AA03Z457)
关键词 SIO2纳米粒子 含氟聚合物 纳米微结构 超疏水 荷叶效应 silica nanoparticle fluoro-polymer nanostructure superhydrophobic lotus-effect
  • 相关文献

参考文献17

  • 1Barthlott W, Neinhuis C. [J]. Planta, 1997, 202: 1-8.
  • 2Neinhuis C, Barthlott. [J]. Annals of Botany, 1997, 79:667-677.
  • 3Wagner T, Neinhuis C, Barthlott W. [J]. Acta Zoologica, 1996, 77: 213-225.
  • 4Wenzel R N. [J]. Ind Eng Chem, 1936, 28(8): 988-994.
  • 5Cassie A B D, Baxter S. [J]. Trans Faraday Soc, 1944, 3:11-16.
  • 6Nakajima A, Fujishima A, Hashimoto K,et al. [J]. Adv Mater, 1999, 11(16): 1365-1368.
  • 7Nakajima A, Hashimoto K, Watanabe T, et al. [J]. Langmuir, 2000, 16(17) :7044-7047.
  • 8Tadanaga K, Morinaga J, Matsuda A, et al. [J]. Chem Mater, 2000, 12: 590-592.
  • 9Feng L, Li S H, Li H J, et al. [J]. Angew Chem Int Ed, 2003, 42: 800-802.
  • 10Song X Y, Zhai J, Wang Y L, et al. [J]. J Phys Chem B, 2005, 109: 4048-4052.

同被引文献58

引证文献7

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部