摘要
引入了H-Z-空间的概念,证明了由次内积导入的次范得到的内积H-Z-空间X为B-Z-空间(X,‖.‖),并将泛函分析学中希尔伯特空间的有关性质移植到内积H-Z-空间之中.
This paper introduces the concept for inner product H - Z - spaces and it proves inner product H - Z - spaces X by leading sub - inner product into sub - normed space is B - Z - spaces ( X,‖·‖ ). some qualities of Hilbert spaces in the functional analysis are established in inner product H - Z - spaces.
出处
《湖北民族学院学报(自然科学版)》
CAS
2008年第4期383-385,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471156)
关键词
Z-空间
内积Z-空间
B-Z-空间
内积空间
性质
Z - spaces
inner product Z - spaces
B - Z - spaces
inner product H - Z - spaces
quality