期刊文献+

基于改进模糊k均值算法和神经网络算法的数据挖掘模型 被引量:1

Data mining model based on improved fuzzy k-means algorithm and neural network algorithm
原文传递
导出
摘要 为解决神经网络算法中样本数据包含大量与目标数据无关的属性而导致网络训练时间长、效率低的问题,提出基于改进模糊k均值(FKM)和BP神经网络算法的数据挖掘模型.利用改进的FKM聚类算法对输入数据的属性进行聚类,摈弃与目标属性相关性弱或冗余的属性,保留相关性强的属性,减少了神经网络的训练样本数据量,提高了网络的训练效率.对儿童血红蛋白含量的预测结果表明,该模型具有很好的实用性和可靠性. A data mining model based on fuzzy k-means (FKM) algorithm and back propagation (BP) neural network algorithm was proposed to solve the problem of long training time and low efficiency when the sample data contains the attributes unrelated to target data. The attributes of input data was clustered by using FKM clustering algorithm, and the attributes with weak correlation or Redundancy to target data were abandoned, and then the attributes with strong correlation to target data were reserveed, which reduce the training samples of neural network, and training efficiency of the network was improved. Tests on forecasting the content of Hemoglobin in the body of children show that the proposed model is practicable and reliable.
出处 《大连海事大学学报》 EI CAS CSCD 北大核心 2008年第4期37-40,44,共5页 Journal of Dalian Maritime University
关键词 模糊k均值算法 BP神经网络 数据挖掘 fuzzy k-means algorithm back propagation (BP) neural network data mining
  • 相关文献

参考文献9

  • 1JING Li-ping, NG M K, HUANG J Z. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19 (8) : 1026- 1041.
  • 2HUANG J Z, NG M K, RONG H,et al. Automated variable weighting in k-means type clustering[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 2005, 27(5 ) :1- 12.
  • 3FRIGUIAND H, NASRAOUI O. Unsupervised learning of prototypes and attribute weights [ J ]. Pattern Recognition, 2004, 37(3). 567-581.
  • 4CHAN Y, CHING W, NG M K, et al. An optimization algorithm for clustering using weighted dissimilarity measures[J].Pattern Recognition, 2004, 37(5): 943-952.
  • 5DOMENICONI C. Locally adaptive techniques for pattern classification[ D]. New York: George Mason University, 2002.
  • 6DOMENICONI C, PAPADOPOULOS D, GUNOPULOS D,et al. Subspace clustering of high dimensional data[ C]// Proceedings of the Fourth SIAM International Conference on Data Mining. Florida, USA:[s. n. ]. 2004:517-521.
  • 7杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:192
  • 8胡清河,张爽,汪定伟.神经网络在项目评估中的应用[J].东北大学学报(自然科学版),2007,28(2):169-171. 被引量:3
  • 9宋擒豹,沈钧毅.Web页面和客户群体的模糊聚类算法[J].小型微型计算机系统,2001,22(2):229-231. 被引量:21

二级参考文献12

  • 1Treshansky A,McGraw R.An overview of clustering algorithms[A].Proceedings of SPIE,The International Society for Optical Engineering[C].2001(4367):41-51.
  • 2Clausi D A.K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation[J].Pattern Recognition,2002,35:1959-1972.
  • 3Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on Systems,Man,and Cybernetics _ Part B:Cybernetics,1998,28(3):301-315.
  • 4Ramze R M,Lelieveldt B P F,Reiber J H C.A new cluster validity indexes for the fuzzy c-mean[J].Pattern Recognition Letters,1998,19:237-246.
  • 5Reza K,Hossein A,Yvon G.An integrated approach to project evaluation and selection[J].IEEE Transactions on Engineering Management,1988,35(4):265-270.
  • 6Krawiec F.Evaluating and selecting research projects by scoring[J].Research Management,1984,27(2):21-25.
  • 7Troxler J W,Blank L.A comprehensive methodology for manufacturing system[J].Evaluation and Comparision Journal of Manufacturing Systems,1989,8(3):175-183.
  • 8Alemeida L B,Wellekens C J.Neural network[C]∥Proceeding of EURASIP Workshop.Berlin:Springer-Verlag,1990:161-164.
  • 9Rumerlhart D E,Hinton G E,Williams R J.Learning internal representations by error propagation[C]∥Parallel Distributed Processing.Cambridge,MA:MLT Press,1986:318-362.
  • 10Widrow B.Reliable,trainable network for computing and control[J].Aerospace Engineering,1962(21):78-123.

共引文献213

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部