期刊文献+

Lyapunov指数计算研究及应用 被引量:2

Research on Lyapunov Exponents Algorithm and its Application
下载PDF
导出
摘要 Lyapunov指数是判定系统是否处于混沌状态的简捷方法之一,但计算Lyapunov指数的诸多方法普遍存在精度不高、受噪声影响大且计算量大等问题而使应用受到限制。借助计算机代数系统Maple建立基于Wolf算法的Lyapunov指数的机械化算法,可以方便地计算Lyapunov指数,从而可以迅速判定系统的混沌性。 Lyapunov exponents is a simple method of judging whether one system is chaotic or not, but various ways of calculating have been restrained due to the problems of being inaccurate, being affected greatly by noise and abundant calculations. Based on the Wolf algorithm, a new mechanical algorithm for calculating Lyapunov exponents with the help of computer algebra system Maple is established, which can calculate Lyapunov exponents conveniently and judge the system rapidly.
出处 《温州职业技术学院学报》 2008年第4期39-41,共3页 Journal of Wenzhou Polytechnic
基金 浙江省新苗人才计划项目(31506018080432) 温州大学教学改革项目(314040310407) 温州大学实验室开放项目(10004050030783)
关键词 LYAPUNOV指数 Wolf算法 混沌系统 MAPLE Lyapunov exponents Wolf algorithm Chaotic system Maple
  • 相关文献

参考文献1

二级参考文献8

  • 1郝柏林.从抛物线谈起[M].上海科技教育出版社,1995,97-100.
  • 2LATHROP DP,KOTELICH EJ.Characterization of an experimental strange attractor by periodic orbits[J].Physical Review A,1989,40(7):4028-4031.
  • 3WOLF A,SWIFT JB,SWINNEY HL,et al.Determining Lyapunov Exponents From a Time Series[J].Physica D,1985,(16):285-317.
  • 4ROSENTEIN MT,COLLINS JJ,DE LUCA CJ.A practical method for calculating largest lyapunov exponents from small data sets[J].Physica D,1993,(65):117-134.
  • 5GAO JB,ZHENG Z.Local exponential divergence plot and optional embedding of a chaotic time series[J].Physics Letters,1993,(181):153-158.
  • 6LAI YC,LERNER D.Effective scaling regime for computing the correlation dimension from chaotic time series[J].Physica D,1998,(115):1-18.
  • 7丘水生.混沌吸引子周期轨道理论研究(I)[J].电路与系统学报,2003,8(6):1-5. 被引量:15
  • 8丘水生.混沌吸引子周期轨道理论研究(Ⅱ)[J].电路与系统学报,2004,9(1):1-5. 被引量:7

共引文献5

同被引文献9

引证文献2

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部